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1) Once the heliocentric ecliptic XYZ coordinates of Saturn
have been computed, determine the ecliptic coordinates
(i.e. celestial longitude and celestial latitude )= cos cos= cos sin= sin

Assignment 1 on Reference Frames 

Source:  Fig 2.12 Roy AE (2005) “Orbital Motion” 4th Ed, Institute of Physics Publishing

=

Ecliptic Plane

2) Obtain the declination and the right ascension
solving the spherical triangle composed by
- Ecliptic Pole (K)
- North Pole (P)
- Saturn position (X)sin = sin cos + cos sin sincos cos = cos coscos sin = sin sin + cos sin cos



1) Earth and Saturn state vectors (m)  at 2017   9    15    10

a) Earth

rE=[149154157823.59161 -19595253613.626305      789195.69570630370] 

vE=[3395.3531760092610 29423.115875348496 -1.1850112716553731]

b) Saturn

rS=[-77601953122.596344 -1500662823543.8748      29186774403.608196] 

vS=[ 9119.9363531768449 -528.40138485647105 -353.66374117125878]

2) Relative Vector

r=rS-rE;

ru=r/norm(r);

3) Ecliptic coordinates (i.e. celestial longitude and celestial latitude)

𝑥 = 𝑟 cos 𝛽 cos 𝜆
𝑦 = 𝑟 cos 𝛽 sin 𝜆
𝑧 = 𝑟 sin 𝛽      

 

𝛽 = asin (
𝑧

𝑟
) = 1.1159º 

𝜆 = 𝑎𝑡𝑎𝑛 (
𝑦

𝑥
) = −98.705º = 261.295º 

4) Assuming an ecliptic angle = 23.439 , obtain 𝛿 and 𝛼 by solving the spherical triangle composed by

- Ecliptic Pole

- North Pole

- Saturn position

Fig 2.12 Roy (2005) “Orbital Motion” 4th Ed 

sin 𝛿 = sin 𝛽 cos 휀 + cos 𝛽 sin 𝜆 sin 휀
cos 𝛿 cos 𝛼 = cos 𝛽 cos 𝜆      

  cos 𝛿 sin 𝛼 = −sin 𝛽 sin 휀 + cos 𝛽 sin 𝜆 cos 휀 

Hence 

𝛿 = 𝑎𝑠𝑖𝑛(sin 𝛽 cos 휀 + cos 𝛽 sin 𝜆 sin 휀) = −22.04º

𝛼 = 𝑎𝑡𝑎𝑛 (
−sin 𝛽 sin 휀 + cos 𝛽 sin 𝜆 cos 휀

cos 𝛽 cos 𝜆
) = −99.39º

= 260.61º = 17h 22m 26 s 



Assignment 1 on reference frames 

The aim of this report is to compute the right ascension and the declination of the Cassini probe 

from the Earth during the Grand Final re-entry into Saturn’s atmosphere. The Grand Final is 

the final phase of the Cassini mission that has brought Cassini probe close to Saturn to observe 

from a never seen angle the planet and its rings before dying in its atmosphere.  

To simplify the calculation, we will consider that the position of Cassini probe and Saturn are 

the same because the difference of position between the two from the Earth is negligeable. Then 

we only have to compute the right ascension and declination of Saturn.  

The first step is to compute the orbital elements of Saturn’s orbit at the date of 15th September 

2017 which is the date of re-entry of Cassini in the planet’s atmosphere.  

We first calculate the Julian Date Number and Julian Centuries of the 15th September 2017: 

Julian day (15 September 2017 19h): 2458012.2916666665 

Julian centuries: 0.17706479580195789 

We can then propagate the orbital elements of Saturn to the Julian Centuries given by the 

following table:  

PB



This gives us the following orbital elements propagated to Julian Centuries: 

- Semi-major axis: a = 9.53645450276637 UA = 1426633287555.448 m

- Eccentricity: e = 0.05377150288997262

- Inclination: i = 2.486334683380504 °

- Longitude of the ascending node: Ω = 113.61130977950137 °

- Argument of the periastre: �̅� = 92.5246930900429 °

- Mean longitude: L = 266.41482778039654 °

We then calculate the angular momentum with the formula: 

Angular momentum: ℎ = √𝜇𝑠𝑎(1 − ⅇ2) = 1123364.0571139366

We can deduce the argument of perihelion and the mean anomaly  

Argument of the perihelion: ω = �̅� − Ω  = 338.9133833105415 ° 

Mean anomaly: M = L− �̅� = 173.89013469035365 ° 

We then implement a solver of the Kepler equation to calculate the eccentric anomaly. 

Knowing that the Kepler equation is 𝑀 = 𝐸 − ⅇ𝑠𝑖𝑛(𝐸), we solve this by using the Newton-

Raphson iterative method: 

𝐸𝑖+1 = 𝐸𝑖 +
𝐸𝑖 − ⅇ𝑠𝑖𝑛(𝐸𝑖) − 𝑀

1 − ⅇ𝑐𝑜𝑠(𝐸𝑖)

This gives us the result in radians after few iterations: 

Eccentric anomaly: E = [3.034955387083081, 3.04038810581619, 3.0403880270031536, 

3.0403880270031536, 3.0403880270031536, 3.0403880270031536, 3.0403880270031536, 

3.0403880270031536] 

The result is in radians because Python software use radians to make trigonometric 

calculations.  

We can then deduce the true anomaly via the formula: 

𝜃 = 2 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑡𝑎𝑛(

𝐸

2
)

√
1−ⅇ

1+ⅇ

) = 3.0456828572531816 rad = 171,88733853967335108 ° 

From those orbitals elements we can deduce the state vector with the following formulas: 

(
𝑋
𝑌
𝑍

) = 𝑅 (
𝑟cos(θ)

𝑟𝑠𝑖𝑛(𝜃)
0

) 

𝑤𝑖𝑡ℎ 𝑅 =  (
cos(Ω ) cos(w) − sin(Ω ) cos(i) sin(w) − cos(Ω ) sin(w) − sin(Ω ) cos(i) cos(w) sin(Ω ) sin(i)

sin(Ω ) cos(w) + cos(Ω ) cos(i) sin(w) − sin(Ω ) sin(w) + cos(Ω ) cos(i) cos(w) − cos(Ω ) sin(i)

sin(𝑖) sin(𝑤) sin(𝑖) cos(𝑤) cos(𝑖)
) 



𝑎𝑛𝑑 𝑟 =
ℎ2

𝜇

1

1 + ⅇ𝑐𝑜𝑠(𝜃)
(

cos (𝜃)
sin (𝜃)

0

) 

The computation finally gives us: 

𝑟 =  (
𝑥
𝑦
𝑧

)  = (
−7.73064557 ∗ 1010 𝑚
−1.50067990 ∗ 1012 𝑚
2.91753118 ∗ 1010 𝑚

) 

Once we have the state vector of Saturn from the Earth, we can deduce the celestial longitude 

λ and celestial latitude β. 

𝛽 = 𝑠𝑖𝑛−1 (
𝑧

𝑟
) =  1.1122950980934008 ° 

λ = 𝑐𝑜𝑠−1 (
𝑥

𝑟𝑐𝑜𝑠(𝛽)
) = 92.94894452763805 ° 

We can finally compute the declination 𝛿 and the right ascension α by solving the spherical 

triangle with the following formulas:  

𝛿 = 𝑠𝑖𝑛−1(sin(𝛽) cos(휀) + cos(𝛽) sin(λ ) sin (휀))

α = 𝑐𝑜𝑠−1 (
cos(𝛽) cos (λ )

cos (𝛿)
) 

where 휀 is the angle between the equator and the ecliptic plane of the Earth. After doing some 

research we found that 휀 = 23.26° . 

This gives us a final result of: 

𝑫𝒆𝒄𝒍𝒊𝒏𝒂𝒕𝒊𝒐𝒏: 𝜹 = 𝟐𝟒. 𝟑𝟑𝟗𝟒𝟏𝟏𝟕𝟗𝟑𝟗𝟐𝟗𝟎𝟓 ° 

 𝐑𝐢𝐠𝐡𝐭 𝐚𝐬𝐜𝐞𝐧𝐬𝐢𝐨𝐧: 𝛂 = 𝟗𝟑. 𝟐𝟑𝟔𝟐𝟗𝟕𝟎𝟔𝟗𝟖𝟐𝟖𝟗 ° 
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1. Introduction to Cassini and its Grand Finale
Mission

Cassini was a NASA spacecraft tasked to explore Saturn 
and its icy moons. Cassini spent 20 years in space – 13 of 
which was exploring Saturn until it exhausted all of its 
fuel supply. To protect the icy moons, which has the 
potential to harbour life, Cassini was tasked with its final 
mission. This mission was to plunge itself into Saturn’s 
atmosphere where it will return science data throughout, 
the mission was therefore named The Grand Finale. The 
Grand Finale mission began on the 22nd April 2017 and 
ended on the 15th September 2017 [1]. 

2. Introduction to Right Ascension and Declination

The right ascension and declination, similar to latitude 
and longitude, determines the position of an object with 
reference to a spherical body. The right ascension and 
declination describes the location of a celestial body in 
the Earth’s sky. The right ascension is measured along 
the celestial equator, a projection of the equatorial plane. 
It’s origin is determined by the vernal equinox and 
measured in the eastern direction. Declination is 
measured along the meridian where North is positive and 
South is negative measured from the celestial equator [2]. 

3. Determining the Right Ascension and Declination
of Cassini

The right ascension and declination of Cassini can be 
assumed to be the same as that of Saturn’s. This 
assumption can be backed up by taking into account the 
distance between Earth and Saturn and the altitude of 

Cassini at the beginning of the mission and computing the 
trigonometric angle. On the 23rd April Cassini came 
within 2950km of Saturn’s 1 bar atmosphere [3]. The 
distance between Earth and Saturn is 1.2 billion km [4]. 
Using the trigonometric ratios an estimation of the angle 
can be determined by the following solution. 

tan	(𝑐) =
2950

1.2 ∗ 10! = 	2.4583 ∗ 10"# 

𝑐 = 1.409 ∗ 10"$ degrees 

This confirms the angle between Cassini and Saturn is 
negligible and that the right ascension and declination of 
Cassini can be assumed to be the same as Saturn’s. 

3.1.  Orbital Elements of Earth and Saturn 

Orbital elements define a bodies orbit around a given 
mass. To determine the position of Saturn and Earth both 
orbital elements are defined in the heliocentric reference 
frame and by the elements: semi-major axis, a, 
eccentricity, e, inclination, i, right ascension of the 
ascending nodes, 	Ω,	 the longitudinal of perihelion, 𝜛, 
and the mean longitude, L. Table 1 displays the orbital 
elements at J2000 and how they change per Julian 
century, Cy. 

Ω, deg 
Ω̇, º/Cy 

𝜛, deg 
�̇�, º/Cy 

L, deg 
�̇�, º/Cy 

Earth 0 
0 

102.93768 
0.3232736 

100.4645716 
35999.37245 

Saturn 113.66242448 
-0.28867794

92.598878 
-0.418972

49.95424423 
1222.493622 

Table 1: Heliocentric Orbital Elements [2] 

From table 1 the orbital elements on the 15th September 
2017 can be obtained by calculating the number of Julian 
days between 15th September 2017 Julian day J2000, T0. 
The following algorithm displays how to compute the 
orbital elements. 

Algorithm 1: Determining the heliocentric orbital 
elements of Earth and Saturn [5] 

1) Compute the 15th September 2017 in Julian days, JD

Where: J0 measured the Julian day till noon. For
example at J2000 equates to the 1st January 2000
12:00 which equates to a Julian day of 2451545.0,
on the same day but at 00:00 the Julian day is
2451544.5 and on 2nd January 2000 at 00:00 the
Julian day is 2451545.5. Thus, the time needs to be
accounted for, UT.

a, AU 
�̇�, AU/Cy 

e 
�̇�, 1/Cy 

i, deg 
�̇�, º/Cy 

Earth 1.00000261 
0.00000562 

0.01671123 
-0.00004392

-0.00001531
-0.01294668

Saturn 9.53667594 
-0.00125060

0.05386179 
-0.0005099

2.48599187 
0.00193609 
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𝐽𝐷 = 𝐽! +
"#
$%

                 (1) 

J0 is computed using the following equation: 

𝐽% = 367𝑦 − 𝐼𝑁𝑇 B
7 ∗ (𝑦 + 𝐼𝑁𝑇 D𝑚 + 9

12 F
4 G	

																											+𝐼𝑁𝑇 H
275𝑚
9 I + 𝑑	

																														+1,721,013.5 (2) 

Where: y is the year, m is the month, d is the day and 
INT() denoted acquiring the integer, rounding down. It 
must be stated that J0 computes the Julian day to 
00:00am. For the 15th September 2017 3:31am. 

𝐽% = 2458011.5 days 

𝑈𝑇 = 3 + &'
#%
= −8.4833 hours 

𝐽𝐷 = 	2458011.1465 days 

2) Compute the ratio of the difference of the 15th

September 2017 and J2000 to the Julian century.

𝑇! =
&'(&$!!!

)*
       (3) 

𝑇% =
2458011.1465	 − 2451545

36525 	
	
						= 0.177047 

3) Compute the orbital elements of Earth and Saturn on
15th September. If 𝜙 represents any given orbital
element then the orbital element is equated by using:

𝜙 = 𝜙% + �̇�𝑇% 

a, km e i, º 
Earth 1.4960*108 0.01670 359.9977 
Saturn 1.4266*109 0.0538 2.4863 

Ω, º 𝜛, º L, º 
Earth 0 102.9949 354.5574 
Saturn 113.6113 92.5247 266.3765 

Table 2: Orbital Elements at JD 

Table 2 takes into consideration of the conversion 
between the astronautical unit to kilometres 
(1.49597871*108 km). 

4) Obtain the angular momentum, h, from the semi-
major axis and the eccentricity at JD

            ℎ = 	P𝜇𝑎(1 − 𝑒()  (4) 

where µ is the gravitational parameter of the orbit’s 
focus i.e. the Sun. 

Earth: 

ℎ) = 4.4551 ∗ 10! kg.km2.s-1 
Saturn: 

ℎ* = 1.3740 ∗ 10'% kg.km2.s-1 

5) From the longitudinal of perihelion, 𝜛, and the mean
longitude, L, compute the argument of perihelion, 𝜔,
and the mean anomaly, 𝑀.

  𝜔 = 𝜛 −Ω (5) 

 𝑀 = 𝐿 −𝜛              (6) 

If calculated values are either over 360º or less than 360º 
the values have to be adjusted to be in the range of -360º 
< 𝜙 < 360º. 

Earth: 
𝜔) = 102.9949 degrees 
𝑀) = 251.0553 degrees 

Saturn: 
𝜔* = 338.9134 degrees 
𝑀* = 173.8518 degrees 

6) Implementing the mean anomaly, 𝑀 and
eccentricity, e, the eccentric anomaly, 𝐸, can be
calculated using the Kepler’s equation. Kepler’s

𝑀 = 𝐸 − 𝑒𝑠𝑖𝑛(𝐸)  (7) 
Earth: 

𝐸) = 	250.5468 degrees 
Saturn: 

𝐸* = 173. .8575degrees 

7) Finally, calculate the true anomaly, 𝜃, using the
following equation.

tan )+
$
* = +,(-

,.-
tan )/

$
*              (8) 

Earth: 
𝜃) = 249.6468 degrees 

Saturn: 
𝜃* = 174.1788 degrees 

3.2.  Determining the orbital state vectors of Earth 
and Saturn from the known orbital elements 

Orbital vector can be obtained by implementing the true 
anomaly, 𝜃, and the eccentricity, e, the angular 
momentum, h, and the gravitational constant, µ. The 
orbital vector is computed using the following equation: 

,
𝑥
𝑦
𝑧
0 = 0!

1
,

,.-234(/)
1
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
0
9  (9) 

Earth: 

Y
𝑥
𝑦
𝑧
\
)

= ]
−5.2321 ∗ 10+
−1.4104 ∗ 10,

0
^km 

Saturn: 
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Y
𝑥
𝑦
𝑧
\
*

= ]
−1.4952 ∗ 10!
1.5243 ∗ 10,

0
^km 

Shown above are the coordinated of Earth and Saturn if 
plotted perifocal frame centred at the sun. Thus, the 
orientation of their orbits needs to be taken into account. 
To do this a rotational matrix, R, is implemented taking 
into consideration the orbits, right ascension of ascending 
nodes, Ω, argument of perihelion, 𝜔 and the inclination, 
i. The negative of these angles are taken as a result of the
natural clockwise direction of the Euler rotation matrix.

𝑹(−𝛺) = ]
cos(𝛺) − sin(𝛺) 0
sin(𝛺) cos(𝛺) 0
0 0 1

^ 

𝑹(−𝑖) = ]
1 0 0
0 cos(𝑖) − sin(𝑖)
0 sin(𝑖) cos(𝑖)

^ 

𝑹(−𝜔) = ]
cos(𝜔) − sin(𝜔) 0
sin(𝜔) sin(𝜔) 0
0 0 1

^ 

 𝑹 = 𝑹(−𝛺) ∗ 𝑹(−𝑖) ∗ 𝑹(−𝜔)         (10) 
	

]
𝑋
𝑌
𝑍
^ = 𝑹 ∗ Y

𝑥
𝑦
𝑧
\ 

Thus, the orbital state vectors are: 
Earth: 

]
𝑋
𝑌
𝑍
^
)

= ]
1.4919 ∗ 10,
−1.9266 ∗ 10+
775.8471

^km 

Saturn: 

]
𝑋
𝑌
𝑍
^
*

= ]
−8.5834 ∗ 10+
−1.5002 ∗ 10!
2.9506 ∗ 10+

^km 

3.3.  Obtaining the right ascension and declination 

As the right ascension and declination is a measurement 
relative to the position of Earth, the coordinates of Saturn 
needs to be related to the position of the Earth, R.  

𝑅 = ]
𝑋
𝑌
𝑍
^ = ]

𝑋
𝑌
𝑍
^
*

− ]
𝑋
𝑌
𝑍
^
)

From R the celestial coordinates can be obtained (i.e. the 
celestial longitude, 𝜆 and the celestial latitude, 𝛽). These 
values are determined by using the following equations. 

 𝑋 = 𝑟𝑐𝑜𝑠(𝛽) cos(𝜆)            (11) 

 𝑌 = 𝑟𝑐𝑜𝑠(𝛽) sin(𝜆)            (12) 

 𝑍 = 𝑟𝑠𝑖𝑛(𝛽)             (13) 

         𝑟 = √𝑋( + 𝑌( + 𝑍(  (14) 

Analytical solution: To account for the possibility of a 
negative angle the inverse sine function is used. 

𝑟 = 1.5010 ∗ 10!km 

𝛽 = sin"' D-
.
F =1.1273 degrees 

𝜆 = sin"' D /
.∗123(5)

F = − 80.9821 degrees 

The celestial coordinates are then used to compute the 
declination and the right ascension of the celestial body. 
The celestial coordinates are referenced to the Earth’s 
axis of rotation and the ecliptic plane, as such, the 
obliquity of the ecliptic needs to be taken into account. 
The obliquity of the ecliptic is the angle between the 
ecliptic plane and celestial equator plane, which is 
currently 23.5º and denoted as 𝜀. The following equations 
are used to determine the right ascension,  𝛼 and 
declination 𝛿. 

   sin(𝛿) = sin(𝛽) cos(𝜀) + cos(𝛽) cos(𝜆) sin(𝜀)   (15) 

 cos(𝛿) cos(𝛼) = cos(𝛽) cos(𝜆)            (16) 

cos(𝛿) sin(𝛼) = −sin(𝛽) sin(𝜀)	
																																+ cos(𝛽) sin(𝜆) cos(𝜀)            (17) 

Analytical solutions: 

𝛿 = sin"' H sin(𝛽) cos(𝜀)
+ cos(𝛽) cos(𝜆) sin(𝜀)I	

																	
= −22.0677 degrees 

𝛼 = sin"' Y
−sin(𝛽) sin(𝜀) + cos(𝛽) sin(𝜆) cos(𝜀)

cos(𝛿) \	

= −80.2644 degrees 

3.4.  Unit Conversion 

To finalise the calculation, more suitable units are 
selected. The right ascension is converted to hours, 
minutes and seconds and declination is converted to 
degrees, minutes and seconds. 

3.4.1. Right Ascension Unit Conversion Algorithm 

As previously stated the Right ascensions units are 
represented in hours, minutes and seconds. The following 
algorithm describes how to convert degrees to hours, 
minutes and seconds. 

1) Right ascension is measured from the vernal equinox
in the Eastern direction. Thus if the angle computed
is in the range of -360º ≤ 𝛼 ≤ 0º then 360º is added to
𝛼. If 0º ≤ 𝛼 ≤ 360º then move straight to step 2.

2) A full rotation around the celestial is 360º equivalent
to 24 hours, therefore 1 hour is equal to 15º. Dividing
𝛼 by 15º acquires the hour plus a decimal, the hour
is represented by the integer. For example if the
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computed hour decimal is 13.8974 then the hour is 
13. 

3) The remaining decimal (using the previous
example), 0.8974 is multiplied by 60 (minutes).
Following the same procedure, the obtained value is
the minute decimals, thus the integer is deemed as
the minute. Continuing with 0.8974 the minute
calculated is 53 minutes 0.844 remaining.

4) Finally, to compute the seconds the remaining
decimal from step 3 is multiplied by 60 (seconds).
The integer is deemed as the seconds and the
remaining decimal is unlisted. E.g. 0.844 is
equivalent to 50 seconds.

Using the above algorithm the right ascension is: 
𝛼 =	18 hours, 38 minutes and  56 seconds 

3.4.2. Declination Unit Conversion Algorithm 

As previously stated the declination is represented in the 
format of degrees, minutes and seconds. The following 
algorithm describes how to convert the degrees decimal 
to degrees, minutes and seconds: 

1) From the degree decimal the integer is denoted as the
degree and the remaining decimal is considered as
the minute decimal. For example 13.8964º is
considered as 13º and 0.8964 is the minute decimal.

2) The minute is determined by multiplying the minute
decimal by 60. The integer of the computed value is
the minute whilst the remaining decimal is the
seconds decimal. E.g. 0.8964 is represented by 53
seconds and 0.844 is the seconds decimal.

3) Finally, the seconds is computed by multiplying the
seconds decimal by 60. The seconds is represented
by the integer. E.g. 0.844 is represented by 50
seconds.

Thus, declination is:

𝛿 = −22.0677% = -22º 4’ 3” 

4. Conclusion

In conclusion on the 15th September 2017 the right 
ascension and declination of Saturn is computed as 18 
hours, 38 minutes and 56 seconds -22º 4’ 3”. From 
comparisons to other computations there is an estimated 
error of 7.34% in the right ascension and an error of 
1.54% in declination. This error is generated from the 
rotation matrix applied to the perifocal coordinates of 
Saturn, potentially a consequence of small errors being 
generated at the start of the calculation. These errors then 
propagate through the code and grow larger and larger.  
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Equation 13: Relation between the z coordinate and 
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Equation 14: Magnitude of R (distance from Earth)....4 
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Equation 16: Relation of cosine declination and cosine 
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right ascension................................................................4 

6. References

1. Overview | The Grand Finale – NASA Solar
System Exploration [Internet]. NASA Solar System
Exploration. 2020  [cited 7 November 2020].
Available from:
https://solarsystem.nasa.gov/missions/cassini/missi
on/grand-finale/overview/ 

2. Curtis H. Orbital mechanics for engineering
students. 4th ed. Elsevier; 2020.

3. Orbit Guide | The Grand Finale – NASA Solar
System Exploration [Internet]. NASA Solar System
Exploration. 2020 [cited 7 November 2020].
Available from:
https://solarsystem.nasa.gov/missions/cassini/missi
on/grand-finale/grand-finale-orbit-guide/ 

4. Redd N. How Far Away is Saturn? [Internet].

Space.com. 2020 [cited 7 November 2020]. 

Available from: https://www.space.com/18477-

how-far-away-is-saturn.html 

5. Curtis H. Orbital mechanics for engineering
students. 3rd ed. Elsevier; 2014.



6 

Appendix (Matlab Code) 
 
 
 

 

 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 

 
 

 
 
 
 
 
 
 
 

 

 

clear all 
close all 
clc 

%% Units 

Cy = 36525; % Julian Century (days) 
AU = 1.49597871e8; % Astronomical Unit (km) 
arcs = 1/3600; % Arcsecond in degrees (" in degrees) 
muE = 398600.4418; % Gravitational parameter of Earth (km^3/s^2) 
muS =  3.7931187e7; % Gravitational parameter of Saturn (km^3/s^2) 
muS = 1.32712440018e11 

%% Defining orbital elements 

% Earth 

aE = 1.00000261; % Semi-major axis (AU) 
aE_dot = 0.00000562;    % Rate semiaxis is changing per Julian Century 
(AU/Cy) 
eE = 0.01671123; % Eccentricity 
eE_dot = -0.00004392;    % Change of eccentricity per Julian Century (1/Cy) 
iE = -0.00001531;  % Inclination (degrees) 
iE_dot = -0.01294668; % Inclination per Julian Century (¬∫/Cy) 
omE = 0; % RAAN (degrees) 
omE_dot = 0;     % (¬∫/Cy) 
wbE = 102.93768193; % Longitude of perihelion (degrees) 
wbE_dot = 0.32327364;       % (¬∫/Cy) 
LE = 100.46457166; % Mean Longitude (degrees) 
LE_dot = 35999.37244981;   % (¬∫/Cy) 

% Saturn 

aS = 9.53667594; 
aS_dot = -0.00125060; 
eS = 0.05386179; 
eS_dot = -0.00050991; 
iS = 2.48599187; 
iS_dot = 0.00193609; 
omS = 113.66242448; 
omS_dot = -0.28867794; 
wbS = 92.59887831; 
wbS_dot = -0.41897216; 
LS = 49.95424423; 
LS_dot = 1222.49362201; 

% Days from j2000 to 15 September 2017 

YY = 2017; % Year 
MM = 9; % Month 
DD = 15; % Day 

if MM <= 2 
    y = YY-1; 
    m = MM+12; 
elseif MM > 2 
    y = YY; 
    m = MM; 
end 

J0 = 367*y - fix((7*(y+fix((m+9)/12)))/4) + fix((275*m)/9) + DD + 1721013.5;
UT = -(12-(3 + (31/60)));
JD = J0 + (UT/24);     % Julian day

T0 = (JD - 2451545)/Cy;

% Orbital elements on 23 Apr
% Earth



7 

 

 
  

J0 = 367*y - fix((7*(y+fix((m+9)/12)))/4) + fix((275*m)/9) + DD + 1721013.5; 
UT = -(12-(3 + (31/60))); 
JD = J0 + (UT/24);     % Julian day 

T0 = (JD - 2451545)/Cy; 

% Orbital elements on 23 Apr 
% Earth 

aE = (aE + aE_dot*T0)*AU; % 1.496e+8 conversion from astronaumical units 
to km 
eE = eE + eE_dot*T0; 
iE = iE + iE_dot*T0; 
omE = omE + omE_dot*T0; 
wbE = wbE + wbE_dot*T0; 
LE = LE + LE_dot*T0; 

if LE > 360 
    while LE > 360 

LE = LE - 360; 
    end 
elseif LE < 0 
    while LE < 0 

LE = LE + 360; 
    end 
end 

wE = wbE - omE; % Argument of Perihelion (degree) 
ME = LE - wbE; % Mean anomaly (degree) 

% Saturn 

aS = (aS + aS_dot*T0)*AU; 
eS = eS + eS_dot*T0; 
iS = iS + iS_dot*T0; 
omS = omS + omS_dot*T0; 
wbS = wbS + wbS_dot*T0; 
LS = LS + LS_dot*T0; 

if LS > 360 
    while LS > 360 

LS = LS - 360; 
    end 
elseif LS < 0 
    while LS < 0 

LS = LS + 360; 
    end 
end 

wS = wbS - omS; 
MS = LS - wbS; 

% Mean anomaly of Earth 

if iE < 0 

    while iE < 0 
iE = iE+360; 

    end 
elseif iE > 360 

    while iE > 360 
iE = iE - 360; 

    end 
end

if ME > 360
while ME > 360

ME = ME - 360;
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 end 

if ME > 360 
    while ME > 360 

ME = ME - 360; 

    end 
elseif ME < 0 
    while ME < 0 

ME = ME + 360; 

    end 
else 

    ME = ME; 
end 

if wE > 360 
    while wE > 360 

wE = wE - 360; 
    end 
elseif wE < 0 
    while wE < 0 

wE = wE + 360; 
    end 
end 

% Mean anomaly of Saturn 

if MS > 360 
    while MS >360 

MS = MS - 360; 

    end 
elseif MS < 0 
    while MS < 0 

MS = MS + 360; 

    end 
else 

    MS = MS 
end 

if iS < 0 

    while iS < 0 
iS = iS+360; 

    end 
elseif iS > 360 

    while iS > 360 
iS = iS - 360; 

    end 
end 

if wS > 360
while wS > 360

wS = wS - 360;
end

elseif wS < 0
while wS < 0

wS = wS + 360;
end

end
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if wS > 360 
    while wS > 360 

wS = wS - 360; 
    end 
elseif wS < 0 
    while wS < 0 

wS = wS + 360; 
    end 
end 

%% Kepler's equation - Eccentric anomaly (Newton-Raphson Method) 

diff = 1e-20; 
% Earth 

errE = 1; 
EE = 270; % starting value for eccentric anomaly for Earth 

while errE > diff 

    EE_old = EE; 
    f = EE - eE*sind(EE) - ME; 
    df = 1 - eE*cosd(EE); 
    EE = EE - f/df; 

    errE = abs(EE - EE_old); 
end 

% Saturn 

errS = 1; 
ES = MS; 

while errS > diff 

    ES_old = ES; 
    f = ES - eS*sind(ES) - MS; 
    df = 1 - eS*cosd(ES); 
    ES = ES - f/df; 

    errS = abs(ES - ES_old); 
end 

%% True Anomaly 

% Earth 

thetaE = 2*atand(sqrt((1+eE)/(1-eE))*tand(EE/2)); 

if thetaE < 0 
    while thetaE < 0 
    thetaE = thetaE + 360; 
    end 
elseif thetaE > 360 
    while thetaE > 360 
    thetaE = thetaE - 360; 
    end 
else 
    thetaE = thetaE; 
end 
  
% Saturn

thetaS = 2*atand(sqrt((1+eS)/(1-eS))*tand(ES/2));

if thetaS < 0 
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% Saturn 

thetaS = 2*atand(sqrt((1+eS)/(1-eS))*tand(ES/2)); 

if thetaS < 0 
    while thetaS < 0 
    thetaS = thetaS + 360; 
    end 
elseif thetaS > 360 
    while thetaS > 360 

thetaS = thetaS - 360; 
    end 
else 

    thetaS = thetaS; 
end 

%% Coordinate systems 

% Earth 
hE = sqrt(muS*aE*(1-eE^2));  % Angular momentum (kg*m^2*s^-1) 
RpE = ((hE^2/muS)*(1/(1+eE*cosd(thetaE))))*[cosd(thetaE); sind(thetaE); 0]; 

% Rotation vector 

R_omE = [cosd(omE), -sind(omE), 0; sind(omE), cosd(omE), 0; 0, 0, 1]; 

R_iE = [1, 0, 0; 0, cosd(iE), -sind(iE); 0, sind(iE), cosd(iE)]; 

R_wE = [cosd(wE), -sind(wE), 0; sind(wE), cosd(wE), 0; 0, 0, 1]; 

QE = R_omE*R_iE*R_wE; 

RE = QE*RpE;         % Heliocentric coordinates 

% Saturn 
hS = sqrt(muS*aS*(1-eS^2)); 
RpS = (hS^2/muS)*(1/(1+eS*cosd(thetaS)))*[cosd(thetaS); sind(thetaS); 0]; 

% Rotation vector  

R_omS = [cosd(omS), -sind(omS), 0; sind(omS), cosd(omS), 0; 0, 0, 1]; 

R_iS = [1, 0, 0; 0, cosd(iS), -sind(iS); 0, sind(iS), cosd(iS)]; 

R_wS = [cosd(wS), -sind(wS), 0; sind(wS), cosd(wS), 0; 0, 0, 1]; 

QS = R_omS*R_iS*R_wS; 

RS = QS*RpS; 

%% Finding RA and Declination from Cartesian coordinates 

% Coordinates of Saturn relative to the Earth 

R = RS - RE; 

r = sqrt(R(1,1)^2+R(2,1)^2+R(3,1)^2); 

% Computing celestial longitude (lam) and celestial latitude (bet) 
  
bet = asind(R(3,1)/r);
lam = asind(R(2,1)/(r*cosd(bet)));

% Computing the right accension (delta) and declination (alpha) and epi

epi = 23.5;
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R = RS - RE; 

r = sqrt(R(1,1)^2+R(2,1)^2+R(3,1)^2); 

% Computing celestial longitude (lam) and celestial latitude (bet) 

bet = asind(R(3,1)/r); 
lam = asind(R(2,1)/(r*cosd(bet))); 

% Computing the right accension (delta) and declination (alpha) and epi 

epi = 23.5; 
delta = asind(sind(bet)*cosd(epi)+cosd(bet)*sind(lam)*sind(epi)); 
alpha = asind((-
sind(bet)*sind(epi)+cosd(bet)*sind(lam)*cosd(epi))/cosd(delta)); 

% Converting degree decimal to Hours, minutes and seconds 
if alpha < 0 

    alpha1 = alpha + 360; 
end 
alpha1 = alpha1/15; 
a_hr = fix(alpha1); 
a_min1 = (alpha1 - a_hr)*60; 
a_min = fix(a_min1); 
a_sec = (a_min1-a_min)*60; 
a_sec = fix(a_sec); 

% converts degree decimal to degrees, minutes and seconds 
d_deg = fix(delta); 
d_min1 = (delta-d_deg)*60; 
d_min = fix(d_min1); 
d_sec = (d_min1-d_min)*60; 
d_sec = fix(d_sec); 
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Assignment 1

1 Statement

In this first assignment, we are asked to compute the right ascension and declination of the
Cassini spacecraft from Earth, during the Grand Finale atmospheric entry into Saturn.
The assignment is divided in two main parts.

1.1 First part: Heliocentric frame

In the first one we determine the ecliptic coordinates once the heliocentric ecliptic XYZ
coordinates of Saturn are computed, given:

x “ r cosβ cosλ (1)

y “ r cosβ sinλ (2)

z “ r sinβ (3)

Figure 1: Reference frames
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1.2 Second Part: Geocentric frame

In the second activity, we are asked to obtain the declination and the right ascension from
the Earth’s geocentric frame, solving the spherical triangle shown in Figure 2, composed
by:

• Ecliptic Pole (K)

• North Pole (P)

• Saturn position (X)

Using the formulae:

sin δ “ sinβ cos ε` cosβ sinλ sin ε (4)

cos δ cosα “ cosβ cosλ (5)

cos δ sinα “ ´ sinβ sin ε` cosβ sinλ cos ε (6)

Figure 2: The Spherical Triangle
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2 Description of the methodology

The proposed problem will be solved using MATLAB, and the reference data will be
obtained from the Jet Propulsion Laboratory’s (JPL) Solar System Dynamics database.
The main inputs will be the approximate orbital elements of Saturn and Earth, and the
desired evaluation time of the event. The procedure is explained in the following section.

2.1 Code structure

The code used to solve the problem is structured in seven different parts, detailed below:

• Definition of the Solar system data

– Sun’s mass M@ [kg]

– Universal gravitational constant G [m3/kg/s2]

– Sun’s gravitational standard parameter µ@ [m3/s2]

– Earth’s equatorial plane inclination εC [rad]

• Definition of the evaluation time: Cassini’s Grand Finale, real-time downlink initi-
ation.

– Time chose: September 15 at 12:15 PDT (08:15 UTC)

– Transform into Julian Calendar

• Definition of the Keplerian Orbital Elements:

– Definition of the orbital parameters of the planets using JPL’s information, for
the chosen evaluation time. The data is given as a base Keplerian element value
plus a change rate value, referenced to the Julian Century.

∗ Semi-major axis a [UA]

∗ Eccentricity e

∗ Inclination to the ecliptic plane iε [deg]

∗ Mean Longitude L [deg]

∗ Longitude of perihelion Lpe [deg]

∗ Longitude of ascending node Lan [deg]

In addition to the given parameters, some others can be obtained directly from
the known data.

∗ Mean Anomaly M [deg]

∗ Argument of perihelion Ape [deg]

• Kepler’s Equation: Eccentric anomaly.

– Kepler’s equation is a transcendental equation, meaning it cannot be solved for
the eccentric anomaly (E) algebraically. Numerical analysis and series expan-
sions are generally required to evaluate E. In our case, the Newton-Rhapson
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method will be used to solve the equation.
The solver is given a limit error (10´7) and an iterative process is executed
comparing the difference between the previous and actual value until the result
has less error than the desired one. The code also allows to select the bisection
method, to solve the equation. It also permits the selection of three different
initial values of E:

∗ E0 “M

∗ E0 “ π

∗ E0 “M ` e ¨ cospMq

• Planet’s position vectors.

– Obtain the true anomaly θ from E.

– Calculation of the angular momentum h.

– Calculation of the planet’s perifocal radii r.

– Definition of the 313 [Lan iε Ape] rotation matrix.

– Planet’s heliocentric frame position vectors.

– Planet’s relative position vectors.

• Celestial angular longitude λ and latitude β (see Figure 1 and 2).

• Computation of Saturn’s Right Ascension α and declination δ in the geocentric
frame.

4
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3 Data and results

The different data values given to and obtained from the code are declared as follows:

• Evaluation time: Cassini’s Grand Finale.

– Date: September 15, 12:15 am PDT (08:15 UTC).

– Julian date: 2458011.84375.

– Julian century: 0.1770525.

• Keplerian orbital elements and rate of change:

Element a e I L Lpe Lan

Units AU, AU/Cy adim, 1/Cy deg, deg/Cy deg, deg/Cy deg, deg/Cy deg, deg/Cy

Earth
(base)

1.00000261 0.01671123 -0.00001531 100.46457166 102.93768193 0.0

Earth
(rate)

0.00000562 -0.00004392 -0.01294668 35999.37244981 0.32327364 0.0

Saturn
(base)

9.53667594 0.05386179 2.48599187 49.95424423 92.59887831 113.66242448

Saturn
(rate)

-0.00125060 -0.00050991 0.00193609 1222.49362201 -0.41897216 -0.28867794

Table 1: Approximate keplerian orbital elements data.

Element a e i L Lpe Lan M Ape

Units AU adim deg deg deg deg deg deg

Earth 1.17705560 0.01670345 -0.002307 354.244632 102.994918 0 251.2497143 102.994918
Saturn 11.2251685 0.05377151 2.4863346 266.399836 92.5246982 113.611313 173.8751377 -21.0866151

Table 2: Evaluated orbital elements.

• Eccentric and true anomalies, angular momentum.

E θ h

Units rad rad
Mixed

SI + AU
Earth 4.36940413 -1.92946844 3.85461287x1010
Saturn 3.04013951 3.04544731 1.24983013x1010

Table 3: Eccentric, true anomalies and angular momentum.
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• Position vectors.

– Perifocal radii:

∗ rC “ 1.183667 AU

∗ rF “ 11.825659 AU

– Heliocentric position vectors:

∗ ECLIC “ r1.173390961; ´0.155635898; 0.000006268s AU

∗ ECLIF “ r´0.611047636; ´11.807628392; 0.229667650s AU

– Relative position:

∗ ECLIF´C “ r´1.784438597; ´11.651992494; 0.229661382s AU

∗ rF´C “ 11.790076 AU

• Celestial angular position

– βF,C “ 1.116147 deg

– λF,C “ 261.293113 deg

• Geocentric angular position

– Right ascension αF,C “ 260.602687 deg

– Declination δF,C “ ´22.036882 deg

6
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4 Conclusions

It is possible to check a multitude of different parameters in the HORIZONS web interface
of JPL’s Solar System Dynamics directory. That way, we can confirm if the obtained
results are correct or differ from the actual ephemerides. The input parameters used in
the interface are, as stated in the web:

Ephemeris Type: OBSERVER
Target Body: Saturn [699]
Observer Location: Geocentric [500]
Time Span: Start=2017-09-15 08:10, Stop=2017-09-15 08:20, Step=1 m
Table Settings: QUANTITIES=1,2,18,28,41
Display/Output: default (formatted HTML)

The shown Right Ascension and Declination are:

• Saturn R.A.: 17h 23min 26.69s = 260.8612 deg

• Saturn Dec.: -22º 03min 11.0s = -22.05306 deg

As we can see, the error is less than 0.1% in both cases. It should be stated that
the orbital elements used in our calculations are an approximation, albeit one that gives
excellent results, at least when used within JPL’s stated time-span for these values, from
1800 AD to 2050 AD.
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A MATLAB code

1

2 clear all
3 close all
4 format long
5 clc
6

7 %% Solar system data
8 Ms = 1.989e30; % Sun's mass [kg]
9 G = 6.67408e-11; % Gravitational constat [m3/kg/s2]

10 mu_s = Ms*G; % Sun's gravitational standar parameter [m3/s2]
11 ie = deg2rad(23.43658); % Equatorial plane inclination [rad]
12 AU = 149597870700; % [m]
13

14 %% Evaluation time (Grand Finale)
15 % Time when Real-Time downlink is initiated
16 % September 15, 12:15 am PDT
17 % September 15, 08:15 UTC
18

19 year = 2017;
20 month = 9;
21 day = 15;
22 hour = 8;
23 min = 15;
24 sec = 0;
25

26 % To Julian calendar
27 t_string = num2str(year) + "-" + num2str(month) + "-" + num2str(day)+ ...

" "+ ...
28 num2str(hour) + ":" + num2str(min) + ":" + num2str(sec);
29

30 t = datetime(t_string);
31

32 JD = juliandate(t);
33

34 JC = ( JD - 2451545.0 ) / 36525;
35

36 %% Orbital elements
37 keplerianElements;
38

39 % Semi-major axis [UA]
40 orbSat.a = Sat.a + Sat.a * JC;
41 orbEarth.a = Earth.a + Earth.a * JC;
42

43 % Eccentricity
44 orbSat.e = Sat.e + Sat.eR * JC;
45 orbEarth.e = Earth.e + Earth.eR * JC;
46

47 % Inclination to the ecliptic plane [deg]
48 orbSat.i = Sat.i + Sat.iR * JC;
49 orbEarth.i = Earth.i + Earth.iR * JC;
50
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51 % Mean longitude [deg]
52 orbSat.L = Sat.L + Sat.LR * JC;
53 orbEarth.L = Earth.L + Earth.LR * JC;
54 orbEarth.L = mod(orbEarth.L,360);
55

56 % Longitude of perihelion [deg]
57 orbSat.lp = Sat.lp + Sat.lpR * JC;
58 orbEarth.lp = Earth.lp + Earth.lpR * JC;
59

60 % Longitude of the ascending node [deg]
61 orbSat.lan = Sat.lan + Sat.lanR * JC;
62 orbEarth.lan = Earth.lan + Earth.lanR * JC;
63

64 % Mean anomaly [deg]
65 orbSat.M = orbSat.L - orbSat.lp;
66 orbEarth.M = orbEarth.L - orbEarth.lp;
67 orbEarth.M = mod(orbEarth.M,360);
68

69 % Argument of perihelion [deg]
70 orbSat.ap = orbSat.lp - orbSat.lan;
71 orbEarth.ap = orbEarth.lp - orbEarth.lan;
72

73

74 %% Kepler's Equation: Eccentric anomaly
75

76 % Solving Kepler's Equation [rad] (Assignment 2)
77

78 % Solver: 1 -> Newton Raphson
79 % 2 -> Bisection
80 % Initial condition: 1 -> E0 = M
81 % 2 -> E0 = 180
82 % 3 -> E0 = M+e*cos(M)
83

84 init = 3;
85 solver = 2;
86

87 if init == 1
88 E0_S = orbSat.M;
89 E0_E = orbEarth.M;
90 elseif init == 2
91 E0_S = 180;
92 E0_E = 180;
93 elseif init == 3
94 E0_S = orbSat.M + orbSat.e*cosd(orbSat.M);
95 E0_E = orbEarth.M + orbEarth.e*cosd(orbEarth.M);
96 end
97

98 if solver == 1
99 [S_E,kS,tfS] = keplerNRSolve(orbSat.e,orbSat.M,180);

100 [E_E,kE,tfE] = keplerNRSolve(orbEarth.e,orbEarth.M,180);
101 elseif solver == 2
102 diff = 0.5;
103 [S_E,kS,tfS] = ...

keplerBisection(orbSat.e,orbSat.M,(1-diff)*E0_S,(1+diff)*E0_S);

9
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104 [E_E,kE,tfE] = ...
keplerBisection(orbEarth.e,orbEarth.M,(1-diff)*E0_E,(1+diff)*E0_E);

105 end
106

107 % True anomaly
108 angS = tan(S_E/2) / sqrt((1-orbSat.e)/(1+orbSat.e));
109 angE = tan(E_E/2) / sqrt((1-orbEarth.e)/(1+orbEarth.e));
110

111 Sat_theta = 2*atan(angS);
112 Earth_theta = 2*atan(angE);
113

114 % Angular momentum
115 hS = sqrt(mu_s*orbSat.a*(1-orbSat.eˆ2));
116 hE = sqrt(mu_s*orbEarth.a*(1-orbEarth.eˆ2));
117

118 %% Position vectors
119

120 % Rotation matrix
121 rotSat = rotz(orbSat.lan)*rotx(orbSat.i)*rotz(orbSat.ap);
122 rotEarth = rotz(orbEarth.lan)*rotx(orbEarth.i)*rotz(orbEarth.ap);
123

124 % Instantaneous radii
125 rSat_mod = hSˆ2/mu_s/(1+orbSat.e*cos(Sat_theta));
126 rEarth_mod = hEˆ2/mu_s/(1+orbEarth.e*cos(Earth_theta));
127

128 rSat = rotSat * rSat_mod*[cos(Sat_theta) sin(Sat_theta) 0]';
129 rEarth = rotEarth * rEarth_mod*[cos(Earth_theta) sin(Earth_theta) 0]';
130

131 % Instantaneous velocity
132 vSat = rotSat * mu_s/hS*[-sin(Sat_theta) orbSat.e+cos(Sat_theta) 0]';
133 vEarth = rotEarth * mu_s/hE*[-sin(Earth_theta) ...

orbEarth.e+cos(Earth_theta) 0]';
134

135 % Relative position
136 rSEv = rSat - rEarth;
137 rSE = norm(rSEv);
138

139

140 %% Angular position
141

142 beta = asind(rSEv(3)/rSE);
143

144 % Quadran check
145 if rSEv(3)<0
146 beta = 360 + beta;
147 end
148

149 lambda = asind(rSEv(2)/(rSE*cosd(beta)));
150

151 % Quadran check
152 if rSEv(1)<0
153 lambda = 180 - lambda;
154 end
155

156

10
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157 %% Relative Right Ascension and Declination
158

159 ∆ = asind(sind(beta)*cos(ie) + cosd(beta)*sind(lambda)*sin(ie));
160

161 num = cosd(beta)*cosd(lambda);
162 den = cosd(∆);
163 raan = acosd(num/den);
164 raan = 360 - raan;
165

166 ∆

167 raan

1

2 %% Keplerian orbital elements
3

4 % a e I L ...
long.peri. long.node.

5 % AU, AU/Cy rad, rad/Cy deg, deg/Cy deg, deg/Cy ...
deg, deg/Cy deg, deg/Cy

6 %-----------------------------------------------------------------------
7

8 Sat.a = 9.53667594;
9 Sat.aR = -0.00125060;

10 Sat.e = 0.05386179;
11 Sat.eR = -0.00050991;
12 Sat.i = 2.48599187;
13 Sat.iR = 0.00193609;
14 Sat.L = 49.95424423;
15 Sat.LR = 1222.49362201;
16 Sat.lp = 92.59887831;
17 Sat.lpR = -0.41897216;
18 Sat.lan = 113.66242448;
19 Sat.lanR = -0.28867794;
20

21 Earth.a = 1.00000261;
22 Earth.aR = 0.00000562;
23 Earth.e = 0.01671123;
24 Earth.eR = -0.00004392;
25 Earth.i = -0.00001531;
26 Earth.iR = -0.01294668;
27 Earth.L = 100.46457166;
28 Earth.LR = 35999.37244981;
29 Earth.lp = 102.93768193;
30 Earth.lpR = 0.32327364;
31 Earth.lan = 0.0;
32 Earth.lanR = 0.0;

1

2 function [u,v,w] = velPQW(n,r,E)
3

4 % Velocities in km/s
5 % Angular velocity in rev/day

11
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6 % Distances in km
7

8 nrad = n*2*pi/(24*3600); % [rad/s]
9

10 u = -r*nrad*sind(E);
11 v = r*nrad*cosd(E);
12 w = 0;
13

14 end

1

2 function [E,k,tf] = keplerNRSolve(e,M,E0)
3

4 % INPUTS:
5 % e = eccentricity [adim]
6 % M = mean anomaly [deg]
7 % E0 = initial condition [deg]
8 %
9 % OUTPUTS:

10 % E = eccentric anomaly [rad]
11 % k = number of iterations
12 % tf = solving time [s]
13

14 M = deg2rad(M);
15 E0 = deg2rad(E0);
16

17 err = 10e-7; % Error
18 diff = 1; % Difference (f/f')
19 k = 1; % Iteration counter
20 E = E0; % Eccentric anomaly init.
21

22 tic
23 while (abs(diff) > err)
24

25 Fun = E - e*sin(E) - M; % Mean anomaly vs Eccentric anomaly
26 dFun = 1 - e*cos(E); % Derivative
27

28 if(abs(dFun) < err)
29 break;
30 else
31 diff = Fun/dFun;
32 E = E - diff;
33 k = k+1;
34 end
35 end
36

37 tf = toc;
38

39

40 end

1
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2 function [Ep,k,tf] = keplerBisection(e,M,Ea,Eb)
3

4 % INPUTS:
5 % e = eccentricity [adim]
6 % M = mean anomaly [deg]
7 % Ea = Lower boundary E [deg]
8 % Eb = Upper boundary E [deg]
9 %

10 % OUTPUTS:
11 % Ep = eccentric anomaly [rad]
12 % k = number of iterations
13 % tf = solving time [s]
14

15 Ea = deg2rad(Ea);
16 Eb = deg2rad(Eb);
17 M = deg2rad(M);
18

19 f = @(E) (E - e*sin(E) - M);
20 k = 1;
21

22 tic
23 if f(Ea)*f(Eb)>0
24 disp('Not valid initial guesses')
25 else
26 Ep = (Ea + Eb)/2;
27 err = abs(f(Ep));
28 while err > 1e-7
29 if f(Ea)*f(Ep)<0
30 Eb = Ep;
31 else
32 Ea = Ep;
33 end
34 Ep = (Ea + Eb)/2;
35 err = abs(f(Ep));
36 k = k+1;
37 end
38 end
39

40 tf = toc;
41

42 end
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0) This is a question sample on how to return the exam.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above

2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c) A timescale based on an atomic oscillator
d) None of the above

3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above

4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above



5) Which statement is true before and after a gravity assist manoeuvre:
a) The velocity of the spacecraft relative to the planet is maintained constant
b) The velocity of the planet relative to the Sun is maintained constant
c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above

6) Changing the inclination of the orbital plane is more fuel-efficient:
a) In the line of nodes, where the spacecraft intersects the plane of reference
b) At the periapsis, where the velocity is greatest
c) At the apoapsis, where the velocity is lowest
d) None of the above

7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
a) Hyperbolic transfer with chemical propulsion
b) Hohmann transfer with chemical propulsion
c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion

8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
b) In the line between the primary mass and secondary mass, opposite to the

secondary mass
c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass

9) The ascending order of the energy of a Keplerian orbit is:
a) Circle, Ellipse, Parabola, Hyperbola
b) Hyperbola, Parabola, Ellipse, Circle
c) Ellipse, Circle, Hyperbola, Parabola
d) None of the above

10) In a Keplerian orbit representation, the ascending node is:
a) The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors
c) The angle between the orbit plane and a plane of reference (e.g. equator)
d) None of the above

11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23h56 minutes
c) Precession, with a period of 25,765 years and Nutation, with a period of 18.6 years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23h56

minutes
12) The effect of the Drag on the orbit

a) Increase of eccentricity, decrease of perigee height
b) Decrease of eccentricity, decrease of perigee height
c) Decrease of eccentricity, decrease of apogee height
d) Increase of eccentricity, decrease  of apogee height



13) The period of the Geosynchronous Equatorial Orbit (GEO) is
a) A sidereal day (i.e. 23 h 56 m 4.09 s)
b) A solar day (i.e. 24 h)
c) Proportional to the synodic period
d) None of the above

14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
c) The inclination
d) The eccentricity

15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the

Earth.
b) Corresponds to a great circle
c) Repeats the same ground track over and over
d) All of the above

16) A constellation of satellites is
a) Is composed by satellites of very different design
b) Has a common objective (e.g. communication, navigation, science).
c) Is composed by satellites in different orbit each
d) All of the above

17) The Lambert theorem states that the transfer time of a body moving between two points on a
conic trajectory

a) depends on the chord joining these two positions
b) is independent of the direction of motion
c) depends on the conic eccentricity joining these two positions
d) None of the above

18) When solving the Lambert problem by Simo’s method, the geometric meaning of √𝑧𝑧
corresponds to

a) The eccentricity of the solution orbit
b) half of the variation in eccentric anomaly between 𝑷𝑷𝟏𝟏 and 𝑷𝑷𝟐𝟐 on the solution orbit
c) half of the variation in true anomaly between 𝑃𝑃1 and 𝑃𝑃2 on the solution orbit
d) None of the above

19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. ∆V,∆θ) for various combinations of launch time and time-

of-flight ∆t
b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard

the spacecraft.
d) Every pair of launch time and time-of-flight ∆𝐭𝐭 outputs a different result

(e.g. ∆V,∆θ) in the PCP, being no repeated values in the PCP.



20) The Broken Plane Manoeuvre is a consequence of
a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low ∆V requirements of polar transfers
d) None of the above

21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist

maneuver
c) To preliminary design interplanetary missions by means of gravity assists
d) None of the above

22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi

constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above

23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem
d) All of the above

24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its

equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun
c) Its size is proportional to the distance from the planet to the Sun
d) None of the above

25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
b) Can require derivatives of first, second or third order
c) The initialization guess must be good enough to assure numerical convergence
d) None of the above



Question 1 (4 points): 

Compute the ΔV and necessary time to reduce by half the orbital period of a synchronous satellite with 
Neptune rotation using an inward Hohman transfer. 

Assuming 

𝜇𝜇𝑁𝑁 = 6.836529 · 1015 𝑚𝑚3/𝑠𝑠2 

𝑅𝑅𝑁𝑁 = 24764 𝑘𝑘𝑚𝑚 

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at
which the orbiter would be synchronised with the Neptune’s sidereal period of 16.11 ℎ

T = 2π�
𝑎𝑎3

𝜇𝜇

𝑎𝑎 = �𝜇𝜇𝑁𝑁 �
𝑇𝑇

2π
�
23

= �6.836529 · 1015 · �
16.11 · 3600

2π
�
23

= 83513625.04 𝑚𝑚 

ℎ = 𝑎𝑎 − 𝑅𝑅𝑁𝑁 = 83514 · 103 − 24764 · 103 = 58749625.04 𝑚𝑚 = 58749.63 𝑘𝑘𝑚𝑚 

b) Determine the final semi-major axis of the final semi-synchronous orbit

T = 2π�
𝑎𝑎3

𝜇𝜇

𝑎𝑎 = �𝜇𝜇𝑁𝑁 �
𝑇𝑇

2�
2π

�
2

3

= �6.836529 · 1015 · �
16.11 · 3600

4π
�
23

= 52610287.07 𝑚𝑚 

c) For the Hohman transfer, compute the eccentricity and the time required to perform the
manoeuvre:

𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑟𝑟0 − 𝑟𝑟𝑓𝑓
𝑟𝑟0 + 𝑟𝑟𝑓𝑓

=
83513625.04 − 52610287.07
83513625.04 + 52610287.07

= 0.227 

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑟𝑟0 + 𝑟𝑟𝑓𝑓

2
=

83513625.04 + 52610287.07
2

= 68061956.05 𝑚𝑚 

∆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

2
= 𝜋𝜋�

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3

𝜇𝜇
= 𝜋𝜋�

68061956.053

6.836529 · 1015
= 21334.81 𝑠𝑠 = 355.58 𝑚𝑚𝑚𝑚𝑚𝑚 = 5.9263 ℎ 



d) Determine the initial, final and total required ΔV, plotting (sketching) where each ΔV takes places,
and its direction:

𝑉𝑉0 = �
𝜇𝜇
𝑟𝑟0

= �6.836529 · 1015

83513625.04
= 9047.72 𝑚𝑚/𝑠𝑠 

𝑉𝑉𝑡𝑡 = �
2 · 𝜇𝜇
𝑟𝑟0

−
𝜇𝜇

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= �2 · 6.836529 · 1015

83513625.04
−

6.836529 · 1015

68061956.05
= 7954.67 𝑚𝑚/𝑠𝑠 

𝑉𝑉𝑝𝑝 = �
2 · 𝜇𝜇
𝑟𝑟𝑓𝑓

−
𝜇𝜇

𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= �2 · 6.836529 · 1015

52610287.07
−

6.836529 · 1015

68061956.05
= 12627.25 𝑚𝑚/𝑠𝑠 = 

𝑉𝑉𝑓𝑓 = �
𝜇𝜇
𝑟𝑟𝑓𝑓

= �6.836529 · 1015

52610287.07
= 11399.41 𝑚𝑚/𝑠𝑠 

Δ𝑉𝑉1 = 𝑉𝑉𝑡𝑡 − 𝑉𝑉0 = 7954.67 − 9047.72 =  −1093.05 𝑚𝑚/𝑠𝑠 

Δ𝑉𝑉2 = 𝑉𝑉𝑝𝑝 − 𝑉𝑉𝑡𝑡 = 11399.41 − 12627.25 =  −1227.84 𝑚𝑚/𝑠𝑠 

Δ𝑉𝑉𝑇𝑇 = |Δ𝑉𝑉1| + |Δ𝑉𝑉2| = 1093.05 +  1227.84 = 2320.89 𝑚𝑚/𝑠𝑠 

e) Assuming a solid chemical propulsion system of Isp = 300 s, compute the required mass fraction of
propellant to perform such maneuver

∆𝑚𝑚
𝑚𝑚0

= 1 − 𝑒𝑒
− ∆𝑉𝑉
𝐼𝐼𝑠𝑠𝑠𝑠 · 𝑔𝑔𝑆𝑆𝑆𝑆 = 1 − 𝑒𝑒−

2320.89
300 ·9.81 = 0.5492



Question 2 (2 points): 

A geocentric parabolic orbit has a perigee radius of 6600 𝑘𝑘𝑚𝑚  

Assuming  

RE = 6378 km 
μE = 3.986 · 1014  𝑚𝑚3/𝑠𝑠2 

a) Determine the flight time from θ = −90  ͦto θ = +90 ͦ

The orbit equation, particularized at the perigee yields the angular momentum vector:

r =
ℎ2

𝜇𝜇 
1

1 + cos θ

rp =
ℎ2

μE 
1

1 + cos 0

ℎ = �2 · rp · μE = �2 · 6600 · 103 · 3.986 · 1014 = 72536335722.17 𝑚𝑚3/𝑠𝑠2 

The Barker’s equation, particularized at each true anomaly 

Mθ=90 =
1
2

tan �
90
2
� +

1
6

tan3 �
90
2
� =

1
2

+
1
6

=
2
3
𝑟𝑟𝑎𝑎𝑟𝑟 

Mθ=−90 =
1
2

tan �
−90

2
� +

1
6

tan3 �
−90

2
� = −

1
2
−

1
6

= −
2
3

 𝑟𝑟𝑎𝑎𝑟𝑟 

Then 

μ2

h3
(t2 − t1) = M2 − M1 

∆t =
M2 − M1

μ2
h3

=
2
3 − (−2

3)
(3.986 · 1014)2

(72536335722.17)3
= 3202.80 𝑠𝑠 = 53.38 𝑚𝑚𝑚𝑚𝑚𝑚 = 0.88967 ℎ 



b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

We known that the parabolic mean anomaly can be directly computed by the time since the
periapsis:

μ2

h3
t = 𝑀𝑀 

M =
μE2

h3
t =

(3.986 · 1014)2

(72536335722.17)3 24 · 3600 = 35.96 rad =  2060.84 ͦ

That can be related to the true anomaly by means of: 

tan �θ
2
� = �3𝑀𝑀 +  �(3 𝑀𝑀)2 + 1�

1
3 − �3𝑀𝑀 +  �(3 𝑀𝑀)2 + 1�

−13

tan �
θ
2
� = �3 · 35.96 +  �(3 · 35.96)2 + 1�

1
3 − �3 · 35.96 +  �(3 · 35.96)2 + 1�

−13

tan �
θ
2
� = 5.83 𝑟𝑟𝑎𝑎𝑟𝑟 

θ = 160.54 ͦ

Hence, we can obtain the distance from the geocenter: 

r =
ℎ2

𝜇𝜇 
1

1 + cos θ
=

72536335722.172

3.986 · 1014 
1

1 + cos 160.54
= 231047912.72 𝑚𝑚 
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0) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.

d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above

2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c) A timescale based on an atomic oscillator
d) None of the above

3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above

4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
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Compute the l::,.V and necessary time to reduce by half the orbital period of a synchronous satellite with 
Neptune rotation using an inward Hohman transfer. 

Assuming 

µN = 6.836529 • 1015 m3 /s2 

RN = 24764 km

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which
the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h

b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. Tf = T0/2)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required l::,. V, plotting (sketching) where each l::,. V takes places,

and its direction:
e) Assuming a solid chemical propulsion system of lsp = 300 s, compute the required mass fraction of

propellant to perform such maneuver.

Question 2 (2 points): 

A geocentric parabolic orbit has a perigee radius of 6600 km

Assuming 

RE = 6378 km 
µE = 3.986 · 1014 m3 /s2 

a) Determine the flight time from 0 = -90
° to 0 = +90

° 

b) Determine the geocentric vector (r, 0) after 24 h of orbiting the perigee.
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January 2021 
Final Exam 

This theoretical part weights 4 points out of 10 in the final exam 
There is ONLY one correct answer on each question. 
Every correctly answered question adds +1.0 point. 
Every incorrectly answered question discounts -0.25 points 
30 minutes of maximum time to complete the test. 
No lecture slides are allowed or Internet resources. 

Additional Instructions for remote attendees: 
Highlight in bold the correct answer. 
After completion, email-me the exam.

The camera and microphone must be switched on during the entire exam duration. 
Only the mouse can be used during the exam to make the text bold. 

O) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.

d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above

2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun

(cf) A timescale based on an atomic oscillator
'af None of the above

3) The inclination of the orbit {assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above

4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
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Compute the !J.V and necessary time to reduce by half the orbital period of a synchronous satellite with 
Neptune rotation using an inward Hohman transfer. 

Assuming 

µN = 6.836529 · 1015 m3 /s2 

RN= 24764 km

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which
the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h

b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. Tf = T0/2) 
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required !J.V, plotting (sketching) where each !J.V takes places,

and its direction:
e) Assuming a solid chemical propulsion system of lsp = 300 s, compute the required mass fraction of

propellant to perform such maneuver.

Question 2 (2 points): 

A geocentric parabolic orbit has a perigee radius of 6600 km

Assuming 

RE= 6378 km 
µE = 3.986 · 1014 m3 /s2 

a) Determine the flight time from 0 = -90° to 0 = +90° 

b) Determine the geocentric vector (r, 0) after 24 h of orbiting the perigee.
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January 2021 
Final Exam 

This theoretical part weights 4 points out of 10 in the final exam 
There is ONLY one correct answer on each question. 
Every correctly answered question adds +1.0 point. 
Every incorrectly answered question discounts -0.25 points 
30 minutes of maximum time to complete the test. 
No lecture slides are allowed or Internet resources. 

Additional Instructions for remote attendees: 
Highlight in bold the correct answer. 
After completion, email-me the exam.

The camera and microphone must be switched on during the entire exam duration. 
Only the mouse can be used during the exam to make the text bold. 

O) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.

d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously

-t 11 

b) To have only one central body acting on a given time A 
-/� 

@ To have propulsion acting during the cruise phase 
d) None of the above

2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun I\_ 

@ A timescale based on an atomic oscillator 
d) None of the above

3) The Inclination of the orbit (assuming a direct insertion without manoeuvring):
(� Is lower or equal than the latitude of the launch site 

b) Is greater or equal than the latitude of the launch site A 
c) Depends on the launch time / l--
d) None of the above

4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
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Compute the /J.V and necessary time to reduce by half the orbital period of a synchronous satellite with 
Neptune rotation using an inward Hohman transfer. 

Assuming 

µN = 6.836529 · 1015 m3 /s2 

RN= 24764 km

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which
the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h

b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. Tr= T0/2)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required /J.V, plotting (sketching) where each /J.V takes places,

and its direction:
e) Assuming a solid chemical propulsion system of lsp = 300 s, compute the required mass fraction of

propellant to perform such maneuver.

Question 2 (2 points): 

A geocentric parabolic orbit has a perigee radius of 6600 km

Assuming 

RE= 6378 km 
µE = 3.986 · 1014 m3 /s2 

a) Determine the flight time from 0 = -90
° to 0 = +90

° 

b) Determine the geocentric vector (r, 0) after 24 h of orbiting the perigee.
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This theoretical part weights 4 points out of 10 in the final exam 
There is ONLY one correct answer on each question. 
Every correctly answered question adds +1.0 point. 
Every incorrectly answered question discounts -0.25 points 
30 minutes of maximum time to complete the test. 
No lecture slides are allowed or Internet resources. 

Additional Instructions for remote attendees: 
Highlight in bold the correct answer. 
After completion, email-me the exam. 

The camera and microphone must be switched on during the entire exam duration. 
Only the mouse can be used during the exam to make the text bold. 

0) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.

d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
@ To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above

2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c A timescale based on an atomic oscillator
d) None of the above

3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
® Is greater or equal than the latitude of the launch site _-
c) Depends on the launch time
d) None of the above

4) In the two body problem, which of the Keplerian elements are not constant?
a True Anomaly, Eccentric Anomaly 
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
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Question 1 (4 points): 

January 2021 
Final Exam 

Compute the !:N and necessary time to reduce by half the orbital period of a synchronous satellite with 
Neptune rotation using an inward Hohman transfer. 

Assuming 

µN = 6.836529 · 1015 m3 /s2 

RN = 24764 km

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which
the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h

b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. Tr= T0/2)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required !:N, plotting (sketching) where each t:.V takes places,

and its direction:
e) Assuming a solid chemical propulsion system of lsp = 300 s, compute the required mass fraction of

propellant to perform such maneuver.

Question 2 (2 points): 

A geocentric parabolic orbit has a perigee radius of 6600 km

Assuming 

RE= 6378 km 
µE = 3.986 · 1014 m3 /s2 

a) Determine the flight time from 0 = -90° to 0 = +90° 

b) Determine the geocentric vector (r, 0) after 24 h of orbiting the perigee.
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