| Assignatura
 CODI | Astrodynamics
 220332 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| Activitat avaluable | \%Ponderació nota final | Alumne | Nota | Pàgina |
| Exercici Entregable | 10 | Enunciat | - | 2 |
| | | Resolució | - | 3 |
| | | PB | 5,0 | 4 |
| | | AT | 8,0 | 7 |
| Examen Final | | DQ | 10 | 18 |
| | | Enunciat i Correcció | - | 34 |
| | | LN | 3,1 | 42 |
| | | TR | 6,6 | 49 |
| | | UG | 7,2 | 57 |

Assignment 1 on Reference Frames

Compute the right ascension and declination of Cassini from Earth, during the Grand Finale re-entry into Saturn.

Deadline: Partial Exam
Maximum Pages: 4
Groups of three

Source:

https://solarsystem.nasa.gov/missions/cassini/mission/grand-finale/overview/

1) Earth and Saturn state vectors (m) at $2017 \quad 9 \quad 15 \quad 10$
a) Earth
$\begin{array}{lrr}r \mathrm{r}=[149154157823.59161 & -19595253613.626305 & 789195.69570630370] \\ \mathrm{VE}=[3395.3531760092610 & 29423.115875348496 & -1.1850112716553731]\end{array}$
b) Saturn
rS=[-77601953122.596344 $\begin{array}{lll}-1500662823543.8748 & 29186774403.608196]\end{array}$
vS=[9119.9363531768449 $-528.40138485647105 \quad-353.66374117125878]$
2) Relative Vector
$r=r S-r E$;
ru=r/norm(r);
3) Ecliptic coordinates (i.e. celestial longitude and celestial latitude)

$$
\begin{aligned}
& x=r \cos \beta \cos \lambda \\
& y=r \cos \beta \sin \lambda \\
& z=r \sin \beta
\end{aligned}
$$

$\beta=\operatorname{asin}\left(\frac{z}{r}\right)=1.1159^{\circ}$
$\lambda=\operatorname{atan}\left(\frac{y}{x}\right)=-98.705^{\circ}=261.295^{\circ}$
4) Assuming an ecliptic angle $=23.439$, obtain δ and α by solving the spherical triangle composed by

- Ecliptic Pole
- North Pole
- Saturn position

$$
\begin{aligned}
\sin \delta & =\sin \beta \cos \varepsilon+\cos \beta \sin \lambda \sin \varepsilon \\
\cos \delta \cos \alpha & =\cos \beta \cos \lambda \\
\cos \delta \sin \alpha & =-\sin \beta \sin \varepsilon+\cos \beta \sin \lambda \cos \varepsilon
\end{aligned}
$$

Hence

$$
\begin{gathered}
\delta=\operatorname{asin}(\sin \beta \cos \varepsilon+\cos \beta \sin \lambda \sin \varepsilon)=-22.04^{\circ} \\
\alpha=\operatorname{atan}\left(\frac{-\sin \beta \sin \varepsilon+\cos \beta \sin \lambda \cos \varepsilon}{\cos \beta \cos \lambda}\right)=-99.39^{\circ} \\
=260.61^{\circ}=17 \mathrm{~h} 22 \mathrm{~m} 26 \mathrm{~s}
\end{gathered}
$$

Fig 2.12 Roy (2005) "Orbital Motion" $4^{\text {th }}$ Ed

PB

Assignment 1 on reference frames

The aim of this report is to compute the right ascension and the declination of the Cassini probe from the Earth during the Grand Final re-entry into Saturn's atmosphere. The Grand Final is the final phase of the Cassini mission that has brought Cassini probe close to Saturn to observe from a never seen angle the planet and its rings before dying in its atmosphere.

To simplify the calculation, we will consider that the position of Cassini probe and Saturn are the same because the difference of position between the two from the Earth is negligeable. Then we only have to compute the right ascension and declination of Saturn.

The first step is to compute the orbital elements of Saturn's orbit at the date of $15^{\text {th }}$ September 2017 which is the date of re-entry of Cassini in the planet's atmosphere.

We first calculate the Julian Date Number and Julian Centuries of the $15^{\text {th }}$ September 2017:
Julian day (15 September 2017 19h): 2458012.2916666665
Julian centuries: 0.17706479580195789
We can then propagate the orbital elements of Saturn to the Julian Centuries given by the following table:

	$\begin{aligned} & a(\mathrm{AU}) \\ & \dot{\boldsymbol{a}(\mathrm{AU} / \mathrm{Cy})} \end{aligned}$	$\begin{aligned} & \boldsymbol{e} \\ & \dot{e}(1 / \mathrm{Cy}) \end{aligned}$	$\begin{aligned} & i\left({ }^{\circ}\right) \\ & i\left({ }^{\circ} / \mathrm{Cy}\right) \end{aligned}$	$\begin{aligned} & \boldsymbol{\Omega}\left({ }^{\circ}\right) \\ & \dot{\boldsymbol{\Omega}}\left({ }^{\circ} / \mathrm{Cy}\right) \end{aligned}$	$\begin{aligned} & \boldsymbol{\varpi}\left({ }^{\circ}\right) \\ & \dot{\boldsymbol{m}}\left({ }^{\circ} / \mathrm{Cy}\right) \end{aligned}$	$\begin{aligned} & \boldsymbol{L}\left({ }^{\circ}\right) \\ & \dot{\boldsymbol{L}}\left({ }^{\circ} / \mathrm{Cy}\right) \end{aligned}$
Mercury	0.38709927	0.20563593	7.00497902	48.33076593	77.45779628	252.25032350
	0.00000037	0.00001906	-0.00594749	-0.12534081	0.16047689	149,472.67411175
Venus	0.72333566	0.00677672	3.39467605	76.67984255	131.60246718	181.97909950
	0.00000390	-0.00004107	-0.00078890	-0.27769418	0.00268329	58,517.81538729
Earth	1.00000261	0.01671123	-0.00001531	0.0	102.93768193	100.46457166
	0.00000562	-0.00004392	-0.01294668	0.0	0.32327364	35,999.37244981
Mars	1.52371034	0.09339410	1.84969142	49.55953891	-23.94362959	-4.55343205
	0.0001847	0.00007882	-0.00813131	-0.29257343	0.44441088	19,140.30268499
Jupiter	5.20288700	0.04838624	1.30439695	100.47390909	14.72847983	34.39644501
	-0.0001 1607	-0.00013253	-0.00183714	0.20469106	0.21252668	3034.74612775
Saturn	9.53667594	0.05386179	2.48599187	113.66242448	92.59887831	49.95424423
	-0.00125060	-0.00050991	0.00193609	-0.28867794	-0.41897216	1222.49362201
Uranus	19.18916464	0.04725744	0.77263783	74.01692503	170.95427630	313.23810451
	-0.00196176	-0.00004397	-0.00242939	0.04240589	0.40805281	428.48202785
Neptune	30.06992276	0.00859048	1.77004347	131.78422574	44.96476227	-55.12002969
	0.00026291	0.00005105	0.00035372	-0.00508664	-0.32241464	218.45945325
(Pluto)	39.48211675	0.24882730	17.14001206	110.30393684	224.06891629	238.92903833
	-0.00031596	0.00005170	0.00004818	-0.01183482	-0.04062942	145.20780515
Reproduced with permission from Standish et al. (2013).						

This gives us the following orbital elements propagated to Julian Centuries:

- Semi-major axis: $\mathrm{a}=9.53645450276637$ UA $=1426633287555.448 \mathrm{~m}$
- Eccentricity: $\mathrm{e}=0.05377150288997262$
- Inclination: $\mathrm{i}=2.486334683380504^{\circ}$
- Longitude of the ascending node: $\Omega=113.61130977950137^{\circ}$
- Argument of the periastre: $\bar{\omega}=92.5246930900429^{\circ}$
- Mean longitude: $\mathrm{L}=266.41482778039654^{\circ}$

We then calculate the angular momentum with the formula:

$$
\text { Angular momentum: } h=\sqrt{\mu_{s} a\left(1-e^{2}\right)}=1123364.0571139366
$$

We can deduce the argument of perihelion and the mean anomaly
Argument of the perihelion: $\omega=\bar{\omega}-\Omega=338.9133833105415^{\circ}$

$$
\text { Mean anomaly: } \mathrm{M}=\mathrm{L}-\bar{\omega}=173.89013469035365^{\circ}
$$

We then implement a solver of the Kepler equation to calculate the eccentric anomaly.
Knowing that the Kepler equation is $M=E-e \sin (E)$, we solve this by using the NewtonRaphson iterative method:

$$
E_{i+1}=E_{i}+\frac{E_{i}-e \sin \left(E_{i}\right)-M}{1-e \cos \left(E_{i}\right)}
$$

This gives us the result in radians after few iterations:
Eccentric anomaly: $\mathrm{E}=[3.034955387083081,3.04038810581619,3.0403880270031536$,
3.0403880270031536, 3.0403880270031536, 3.0403880270031536, 3.0403880270031536, $3.0403880270031536]$

The result is in radians because Python software use radians to make trigonometric calculations.

We can then deduce the true anomaly via the formula:

$$
\theta=2 \arctan \left(\frac{\tan \left(\frac{E}{2}\right)}{\sqrt{\frac{1-e}{1+e}}}\right)=3.0456828572531816 \mathrm{rad}=171,88733853967335108^{\circ}
$$

From those orbitals elements we can deduce the state vector with the following formulas:

$$
\begin{aligned}
& \qquad\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=R\left(\begin{array}{c}
r \cos (\theta) \\
r \sin (\theta) \\
0
\end{array}\right) \\
& \text { with } R=\left(\begin{array}{ccc}
\cos (\Omega) \cos (\mathrm{w})-\sin (\Omega) \cos (\mathrm{i}) \sin (\mathrm{w}) & -\cos (\Omega) \sin (\mathrm{w})-\sin (\Omega) \cos (\mathrm{i}) \cos (\mathrm{w}) & \sin (\Omega) \sin (\mathrm{i}) \\
\sin (\Omega) \cos (\mathrm{w})+\cos (\Omega) \cos (\mathrm{i}) \sin (\mathrm{w}) & -\sin (\Omega) \sin (\mathrm{w})+\cos (\Omega) \cos (\mathrm{i}) \cos (\mathrm{w}) & -\cos (\Omega) \sin (\mathrm{i}) \\
\sin (i) \sin (w) & \sin (i) \cos (w) & \cos (i)
\end{array}\right)
\end{aligned}
$$

$$
\text { and } r=\frac{h^{2}}{\mu} \frac{1}{1+e \cos (\theta)}\left(\begin{array}{c}
\cos (\theta) \\
\sin (\theta) \\
0
\end{array}\right)
$$

The computation finally gives us:

$$
r=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-7.73064557 * 10^{10} \mathrm{~m} \\
-1.50067990 * 10^{12} \mathrm{~m} \\
2.91753118 * 10^{10} \mathrm{~m}
\end{array}\right)
$$

Once we have the state vector of Saturn from the Earth, we can deduce the celestial longitude λ and celestial latitude β.

$$
\begin{gathered}
\beta=\sin ^{-1}\left(\frac{z}{r}\right)=1.1122950980934008^{\circ} \\
\lambda=\cos ^{-1}\left(\frac{x}{r \cos (\beta)}\right)=92.94894452763805^{\circ}
\end{gathered}
$$

We can finally compute the declination δ and the right ascension α by solving the spherical triangle with the following formulas:

$$
\begin{gathered}
\delta=\sin ^{-1}(\sin (\beta) \cos (\varepsilon)+\cos (\beta) \sin (\lambda) \sin (\varepsilon)) \\
\alpha=\cos ^{-1}\left(\frac{\cos (\beta) \cos (\lambda)}{\cos (\delta)}\right)
\end{gathered}
$$

where ε is the angle between the equator and the ecliptic plane of the Earth. After doing some research we found that $\varepsilon=23.26^{\circ}$.

This gives us a final result of:

POLYTECHNIC UNIVERSITY OF CATALONIA - BARCELONA TECH (UPC) ESCOLA SUPERIOR D'ENGINYERIES INDUSTRIAL, AEROESPACIAL I AUDIOVISUAL DE TERRASSA, ESEIAAT

MSc. in SPACE AND AERONAUTICAL ENGINEERING (MASE)
Course: ASTRODYNAMICS (Q1, 220332)

Computation of the Right Ascension and Declination of Cassini From Earth, during the Grand Finale Re-Entry into Saturn

Assignment 1: Right Ascension and Declination

Table of Contents

1. Introduction to Cassini and its Grand Finale Mission .2
2. Introduction to Right Ascension and Declination 2
3. Determining the Right Ascension and Declination of Cassini 2
3.1. Orbital Elements of Earth and Saturn 2
3.2. Determining the orbital state vectors of Earth and Saturn from the known orbital elements 3
3.3. Obtaining the right ascension and declination 4
3.4. Unit Conversion 4
3.4.1. Right Ascension Unit Conversion Algorithm 4
3.4.2. Declination Unit Conversion Algorithm 5
4. Conclusion 5
5. Table of Equations 5
6. References 5

1. Introduction to Cassini and its Grand Finale Mission

Cassini was a NASA spacecraft tasked to explore Saturn and its icy moons. Cassini spent 20 years in space - 13 of which was exploring Saturn until it exhausted all of its fuel supply. To protect the icy moons, which has the potential to harbour life, Cassini was tasked with its final mission. This mission was to plunge itself into Saturn's atmosphere where it will return science data throughout, the mission was therefore named The Grand Finale. The Grand Finale mission began on the $22^{\text {nd }}$ April 2017 and ended on the $15^{\text {th }}$ September 2017 [1].

2. Introduction to Right Ascension and Declination

The right ascension and declination, similar to latitude and longitude, determines the position of an object with reference to a spherical body. The right ascension and declination describes the location of a celestial body in the Earth's sky. The right ascension is measured along the celestial equator, a projection of the equatorial plane. It's origin is determined by the vernal equinox and measured in the eastern direction. Declination is measured along the meridian where North is positive and South is negative measured from the celestial equator [2].

3. Determining the Right Ascension and Declination of Cassini

The right ascension and declination of Cassini can be assumed to be the same as that of Saturn's. This assumption can be backed up by taking into account the distance between Earth and Saturn and the altitude of

Cassini at the beginning of the mission and computing the trigonometric angle. On the $23^{\text {rd }}$ April Cassini came within 2950km of Saturn's 1 bar atmosphere [3]. The distance between Earth and Saturn is 1.2 billion km [4]. Using the trigonometric ratios an estimation of the angle can be determined by the following solution.

$$
\begin{aligned}
\tan (c) & =\frac{2950}{1.2 * 10^{9}}=2.4583 * 10^{-6} \\
c & =1.409 * 10^{-4} \text { degrees }
\end{aligned}
$$

This confirms the angle between Cassini and Saturn is negligible and that the right ascension and declination of Cassini can be assumed to be the same as Saturn's.

3.1. Orbital Elements of Earth and Saturn

Orbital elements define a bodies orbit around a given mass. To determine the position of Saturn and Earth both orbital elements are defined in the heliocentric reference frame and by the elements: semi-major axis, a, eccentricity, e, inclination, i, right ascension of the ascending nodes, Ω, the longitudinal of perihelion, ϖ, and the mean longitude, L. Table 1 displays the orbital elements at J2000 and how they change per Julian century, Cy .

	$\begin{gathered} \mathrm{a}, \mathrm{AU} \\ \dot{a}, \mathrm{AU} / \mathrm{Cy} \end{gathered}$	$\stackrel{\mathrm{e}}{\dot{e}, 1 / \mathrm{Cy}}$	$\begin{aligned} & \text { i, deg } \\ & i, \% / \mathrm{Cy} \end{aligned}$
Earth	1.00000261	0.01671123	-0.00001531
	0.00000562	-0.00004392	-0.01294668
Saturn	9.53667594	0.05386179	2.48599187
	-0.00125060	-0.0005099	0.00193609

Earth	$\begin{gathered} \Omega, \operatorname{deg} \\ \dot{\Omega},{ }^{\circ} / \mathrm{Cy} \end{gathered}$	$\begin{gathered} \varpi, \mathrm{deg} \\ \dot{\varpi},{ }^{\circ} / \mathrm{Cy} \\ \hline \end{gathered}$	L, deg $\dot{L},{ }^{\circ} / \mathrm{Cy}$
	0	102.93768	100.4645716
	0	0.3232736	35999.37245
Saturn	113.66242448	92.598878	49.95424423
	-0.28867794	-0.418972	1222.493622

Table 1: Heliocentric Orbital Elements [2]
From table 1 the orbital elements on the $15^{\text {th }}$ September 2017 can be obtained by calculating the number of Julian days between $15^{\text {th }}$ September 2017 Julian day J2000, T_{0}. The following algorithm displays how to compute the orbital elements.

Algorithm 1: Determining the heliocentric orbital elements of Earth and Saturn [5]

1) Compute the $15^{\text {th }}$ September 2017 in Julian days, JD

Where: J_{0} measured the Julian day till noon. For example at J2000 equates to the $1^{\text {st }}$ January 2000 12:00 which equates to a Julian day of 2451545.0 , on the same day but at 00:00 the Julian day is 2451544.5 and on $2^{\text {nd }}$ January 2000 at 00:00 the Julian day is 2451545.5 . Thus, the time needs to be accounted for, $U T$.

$$
\begin{equation*}
J D=J_{0}+\frac{U T}{24} \tag{1}
\end{equation*}
$$

J_{0} is computed using the following equation:

$$
\begin{align*}
J_{0}=367 y- & I N T\left[\frac{7 *\left(y+I N T\left(\frac{m+9}{12}\right)\right.}{4}\right] \\
& +I N T\left(\frac{275 m}{9}\right)+d \\
& +1,721,013.5 \tag{2}
\end{align*}
$$

Where: y is the year, m is the month, d is the day and $I N T()$ denoted acquiring the integer, rounding down. It must be stated that J_{0} computes the Julian day to 00:00am. For the $15^{\text {th }}$ September 2017 3:31am.

$$
\begin{gathered}
J_{0}=2458011.5 \text { days } \\
U T=3+\frac{31}{60}=-8.4833 \text { hours } \\
J D=2458011.1465 \text { days }
\end{gathered}
$$

2) Compute the ratio of the difference of the $15^{\text {th }}$ September 2017 and J2000 to the Julian century.

$$
\begin{gathered}
T_{0}=\frac{J D-J 2000}{C y} \\
T_{0}=\frac{2458011.1465-2451545}{36525} \\
=0.177047
\end{gathered}
$$

3) Compute the orbital elements of Earth and Saturn on $15^{\text {th }}$ September. If ϕ represents any given orbital element then the orbital element is equated by using:

$$
\phi=\phi_{0}+\dot{\phi} T_{0}
$$

	a, km	e	$\mathrm{i},{ }^{\circ}$
Earth	$1.4960^{*} 10^{8}$	0.01670	359.9977
Saturn	$1.4266^{*} 10^{9}$	0.0538	2.4863

	$\Omega,{ }^{0}$		$\varpi,{ }^{\circ}$
L, ${ }^{\circ}$			
Earth	0	102.9949	354.5574
Saturn	113.6113	92.5247	266.3765

Table 2: Orbital Elements at JD
Table 2 takes into consideration of the conversion between the astronautical unit to kilometres ($1.49597871 * 10^{8} \mathrm{~km}$).
4) Obtain the angular momentum, h , from the semimajor axis and the eccentricity at JD

$$
\begin{equation*}
h=\sqrt{\mu a\left(1-e^{2}\right)} \tag{4}
\end{equation*}
$$

where μ is the gravitational parameter of the orbit's focus i.e. the Sun.

$$
h_{E}=4.4551 * 10^{9} \mathrm{~kg} \cdot \mathrm{~km}^{2} \cdot \mathrm{~s}^{-1}
$$

Saturn:

$$
h_{S}=1.3740 * 10^{10} \mathrm{~kg} \cdot \mathrm{~km}^{2} \cdot \mathrm{~s}^{-1}
$$

5) From the longitudinal of perihelion, ϖ, and the mean longitude, L, compute the argument of perihelion, ω, and the mean anomaly, M.

$$
\begin{align*}
& \omega=\varpi-\Omega \tag{5}\\
& M=L-\varpi \tag{6}
\end{align*}
$$

If calculated values are either over 360° or less than 360° the values have to be adjusted to be in the range of -360° $<\phi<360^{\circ}$.

Earth:

$$
\begin{aligned}
& \omega_{E}=102.9949 \text { degrees } \\
& M_{E}=251.0553 \text { degrees }
\end{aligned}
$$

Saturn:

$$
\begin{aligned}
& \omega_{S}=338.9134 \text { degrees } \\
& M_{S}=173.8518 \text { degrees }
\end{aligned}
$$

6) Implementing the mean anomaly, M and eccentricity, e, the eccentric anomaly, E, can be calculated using the Kepler's equation. Kepler's

Earth:

$$
\begin{equation*}
M=E-e \sin (E) \tag{7}
\end{equation*}
$$

Saturn:

$$
E_{E}=250.5468 \text { degrees }
$$

$$
E_{S}=173 . .8575 \text { degrees }
$$

7) Finally, calculate the true anomaly, θ, using the following equation.

$$
\begin{equation*}
\tan \left(\frac{E}{2}\right)=\sqrt{\frac{1-e}{1+e}} \tan \left(\frac{\theta}{2}\right) \tag{8}
\end{equation*}
$$

Earth:

$$
\theta_{E}=249.6468 \text { degrees }
$$

Saturn:

$$
\theta_{S}=174.1788 \text { degrees }
$$

3.2. Determining the orbital state vectors of Earth and Saturn from the known orbital elements

Orbital vector can be obtained by implementing the true anomaly, θ, and the eccentricity, e, the angular momentum, h, and the gravitational constant, μ. The orbital vector is computed using the following equation:

$$
\left(\begin{array}{l}
x \tag{9}\\
y \\
z
\end{array}\right)=\frac{h^{2}}{\mu} \frac{1}{1+e \cos (\theta)}\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right)
$$

Earth:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{E}=\left(\begin{array}{c}
-5.2321 * 10^{7} \\
-1.4104 * 10^{8} \\
0
\end{array}\right) \mathrm{km}
$$

Saturn:

Earth:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)_{S}=\left(\begin{array}{c}
-1.4952 * 10^{9} \\
1.5243 * 10^{8} \\
0
\end{array}\right) \mathrm{km}
$$

Shown above are the coordinated of Earth and Saturn if plotted perifocal frame centred at the sun. Thus, the orientation of their orbits needs to be taken into account. To do this a rotational matrix, \boldsymbol{R}, is implemented taking into consideration the orbits, right ascension of ascending nodes, Ω, argument of perihelion, ω and the inclination, i. The negative of these angles are taken as a result of the natural clockwise direction of the Euler rotation matrix.

$$
\begin{gather*}
\boldsymbol{R}(-\Omega)=\left(\begin{array}{ccc}
\cos (\Omega) & -\sin (\Omega) & 0 \\
\sin (\Omega) & \cos (\Omega) & 0 \\
0 & 0 & 1
\end{array}\right) \\
\boldsymbol{R}(-i)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (i) & -\sin (i) \\
0 & \sin (i) & \cos (i)
\end{array}\right) \\
\boldsymbol{R}(-\omega)=\left(\begin{array}{ccc}
\cos (\omega) & -\sin (\omega) & 0 \\
\sin (\omega) & \sin (\omega) & 0 \\
0 & 0 & 1
\end{array}\right) \\
\boldsymbol{R}=\boldsymbol{R}(-\Omega) * \boldsymbol{R}(-i) * \boldsymbol{R}(-\omega) \tag{10}\\
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=\boldsymbol{R} *\left(\begin{array}{l}
x \\
y \\
Z
\end{array}\right)
\end{gather*}
$$

Thus, the orbital state vectors are:
Earth:

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)_{E}=\left(\begin{array}{c}
1.4919 * 10^{8} \\
-1.9266 * 10^{7} \\
775.8471
\end{array}\right) \mathrm{km}
$$

Saturn:

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)_{S}=\left(\begin{array}{c}
-8.5834 * 10^{7} \\
-1.5002 * 10^{9} \\
2.9506 * 10^{7}
\end{array}\right) \mathrm{km}
$$

3.3. Obtaining the right ascension and declination

As the right ascension and declination is a measurement relative to the position of Earth, the coordinates of Saturn needs to be related to the position of the Earth, R.

$$
R=\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)_{S}-\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)_{E}
$$

From R the celestial coordinates can be obtained (i.e. the celestial longitude, λ and the celestial latitude, β). These values are determined by using the following equations.

$$
\begin{gather*}
X=r \cos (\beta) \cos (\lambda) \tag{11}\\
Y=r \cos (\beta) \sin (\lambda) \tag{12}\\
Z=r \sin (\beta) \tag{13}\\
r=\sqrt{X^{2}+Y^{2}+Z^{2}} \tag{14}
\end{gather*}
$$

Analytical solution: To account for the possibility of a negative angle the inverse sine function is used.

$$
\begin{gathered}
r=1.5010 * 10^{9} \mathrm{~km} \\
\beta=\sin ^{-1}\left(\frac{Z}{r}\right)=1.1273 \text { degrees } \\
\lambda=\sin ^{-1}\left(\frac{Y}{r * \cos (\beta)}\right)=-80.9821 \text { degrees }
\end{gathered}
$$

The celestial coordinates are then used to compute the declination and the right ascension of the celestial body. The celestial coordinates are referenced to the Earth's axis of rotation and the ecliptic plane, as such, the obliquity of the ecliptic needs to be taken into account. The obliquity of the ecliptic is the angle between the ecliptic plane and celestial equator plane, which is currently 23.5° and denoted as ε. The following equations are used to determine the right ascension, α and declination δ.

$$
\begin{gather*}
\sin (\delta)=\sin (\beta) \cos (\varepsilon)+\cos (\beta) \cos (\lambda) \sin (\varepsilon) \tag{15}\\
\cos (\delta) \cos (\alpha)=\cos (\beta) \cos (\lambda) \tag{16}\\
\cos (\delta) \sin (\alpha)=-\sin (\beta) \sin (\varepsilon) \\
+\cos (\beta) \sin (\lambda) \cos (\varepsilon) \tag{17}
\end{gather*}
$$

Analytical solutions:

$$
\begin{gathered}
\delta=\sin ^{-1}\binom{\sin (\beta) \cos (\varepsilon)}{+\cos (\beta) \cos (\lambda) \sin (\varepsilon)} \\
=-22.0677 \text { degrees }
\end{gathered}
$$

$$
\alpha=\sin ^{-1}\left(\frac{-\sin (\beta) \sin (\varepsilon)+\cos (\beta) \sin (\lambda) \cos (\varepsilon)}{\cos (\delta)}\right)
$$

$$
=-80.2644 \text { degrees }
$$

3.4. Unit Conversion

To finalise the calculation, more suitable units are selected. The right ascension is converted to hours, minutes and seconds and declination is converted to degrees, minutes and seconds.

3.4.1. Right Ascension Unit Conversion Algorithm

As previously stated the Right ascensions units are represented in hours, minutes and seconds. The following algorithm describes how to convert degrees to hours, minutes and seconds.

1) Right ascension is measured from the vernal equinox in the Eastern direction. Thus if the angle computed is in the range of $-360^{\circ} \leq \alpha \leq 0^{\circ}$ then 360° is added to α. If $0^{\circ} \leq \alpha \leq 360^{\circ}$ then move straight to step 2 .
2) A full rotation around the celestial is 360° equivalent to 24 hours, therefore 1 hour is equal to 15°. Dividing α by 15° acquires the hour plus a decimal, the hour is represented by the integer. For example if the
computed hour decimal is 13.8974 then the hour is 13.
3) The remaining decimal (using the previous example), 0.8974 is multiplied by 60 (minutes). Following the same procedure, the obtained value is the minute decimals, thus the integer is deemed as the minute. Continuing with 0.8974 the minute calculated is 53 minutes 0.844 remaining.
4) Finally, to compute the seconds the remaining decimal from step 3 is multiplied by 60 (seconds). The integer is deemed as the seconds and the remaining decimal is unlisted. E.g. 0.844 is equivalent to 50 seconds.

Using the above algorithm the right ascension is:

$$
\alpha=18 \text { hours, } 38 \text { minutes and } 56 \text { seconds }
$$

3.4.2. Declination Unit Conversion Algorithm

As previously stated the declination is represented in the format of degrees, minutes and seconds. The following algorithm describes how to convert the degrees decimal to degrees, minutes and seconds:

1) From the degree decimal the integer is denoted as the degree and the remaining decimal is considered as the minute decimal. For example 13.8964° is considered as 13° and 0.8964 is the minute decimal.
2) The minute is determined by multiplying the minute decimal by 60 . The integer of the computed value is the minute whilst the remaining decimal is the seconds decimal. E.g. 0.8964 is represented by 53 seconds and 0.844 is the seconds decimal.
3) Finally, the seconds is computed by multiplying the seconds decimal by 60 . The seconds is represented by the integer. E.g. 0.844 is represented by 50 seconds.

Thus, declination is:

$$
\delta=-22.0677^{\circ}=-22^{\circ} 4^{\prime} 3^{\prime \prime}
$$

4. Conclusion

In conclusion on the $15^{\text {th }}$ September 2017 the right ascension and declination of Saturn is computed as 18 hours, 38 minutes and 56 seconds $-22^{\circ} 4^{\prime} 3$ ". From comparisons to other computations there is an estimated error of 7.34% in the right ascension and an error of 1.54% in declination. This error is generated from the rotation matrix applied to the perifocal coordinates of Saturn, potentially a consequence of small errors being generated at the start of the calculation. These errors then propagate through the code and grow larger and larger.

5. Table of Equations

Equation 1: Julian Day considering time of day........... 3
Equation 2: Julian day at noon...................................... 3
Equation 3: Ratio of Julian day from 1st January
2000 to the Julian Century. .. 3
Equation 4: Angular Momentum................................... 3

Equation 5: Relation of argument of Perihelion to longitudinal of perihelion and right ascension of ascending nodes. 3
Equation 6: Relation of mean anomaly to mean longitude and longitudinal of perihelion.

\qquad 3

Equation 7: Keplerian equation demonstrating the relationship between the mean anomaly and eccentric anomaly.
Equation 8: Relation between eccentric anomaly, the eccentricity and the true anomaly.
Equation 9: Perifocal coordinates 3
Equation 10: Euler 313 rotation matrix. 4
Equation 11: Relation between the x coordinate andcelestial latitude and celestial longitude. 4
Equation 12: Relation between the y coordinate andcelestial latitude and celestial longitude. 4
Equation 13: Relation between the z coordinate andcelestial latitude. 4
Equation 14: Magnitude of R (distance from Earth).... 4 4
Equation 15: Relation of sine Declination. 4
Equation 16: Relation of cosine declination and cosineright ascension. 4
Equation 17: Relation of cosine declination and sineright ascension.4

6. References

1. Overview | The Grand Finale - NASA Solar System Exploration [Internet]. NASA Solar System Exploration. 2020 [cited 7 November 2020]. Available from:
https://solarsystem.nasa.gov/missions/cassini/missi on/grand-finale/overview/
2. Curtis H. Orbital mechanics for engineering students. 4th ed. Elsevier; 2020.
3. Orbit Guide | The Grand Finale - NASA Solar System Exploration [Internet]. NASA Solar System Exploration. 2020 [cited 7 November 2020]. Available from:
https://solarsystem.nasa.gov/missions/cassini/missi on/grand-finale/grand-finale-orbit-guide/
4. Redd N. How Far Away is Saturn? [Internet].

Space.com. 2020 [cited 7 November 2020].
Available from: https://www.space.com/18477-
how-far-away-is-saturn.html
5. Curtis H. Orbital mechanics for engineering students. 3rd ed. Elsevier; 2014.

Appendix (Matlab Code)

clear all
close all
clc
\% Units

```
Cy = 36525; % Julian Century (days)
AU = 1.49597871e8; % Astronomical Unit (km)
arcs = 1/3600;
% Arcsecond in degrees (" in degrees)
muE = 398600.4418; % Gravitational parameter of Earth (km^3/s^2)
muS = 3.7931187e7; % Gravitational parameter of Saturn (km^3/s^2)
muS = 1.32712440018e11
```

\%\% Defining orbital elements
\% Earth
$\mathrm{aE}=1.00000261$;
\% Semi-major axis (AU)
aE_dot $=0.00000562$;
(AU / Cy)
eE = 0.01671123; \% Eccentricity
eE_dot $=-0.00004392$; Change of eccentricity per Julian Century (1/Cy)
iE = -0.00001531;
\% Inclination (degrees)
iE_dot $=-0.01294668$; Inclination per Julian Century (\neg / Cy)
om $\bar{E}=0 ; \quad$ \% RAAN (degrees)
omE_dot $=0$; $\quad \% ~(\checkmark / C y)$
wbE = 102.93768193; \% Longitude of perihelion (degrees)
wbe_dot $=0.32327364 ; \quad$ (J / Cy)
$\mathrm{LE}=100.46457166 ; \quad$ Mean Longitude (degrees)
LE_dot $=35999.37244981$; ($ᄀ / \mathrm{Cy}$)
\% Saturn
$\mathrm{aS}=9.53667594$;
aS_dot $=-0.00125060$;
eS ${ }^{-}=0.05386179$;
eS_dot $=-0.00050991$;
iS = 2.48599187;
iS dot $=0.00193609$;
oms $=113.66242448$;
omS_dot $=-0.28867794$;
wbs $=$ 92.59887831;
wbS_dot $=-0.41897216$;
LS = 49.95424423;
LS_dot $=1222.49362201$;
\% Days from j2000 to 15 September 2017

```
YY = 2017; % Year
MM = 9; % Month
DD = 15; % Day
```

if $\begin{aligned} \mathrm{MM} & <=2 \\ \mathrm{y} & =\mathrm{YY}-1 ; \\ \mathrm{m} & =\mathrm{MM}+12 ;\end{aligned}$
elseif MM > 2
Y = YY;
$\mathrm{m}=\mathrm{MM}$;
end

```
J0 = 367*y - fix((7*(y+fix((m+9)/12)))/4) + fix((275*m)/9) + DD + 1721013.5;
UT = -(12-(3 + (31/60)));
JD = J0 + (UT/24); % Julian day
T0 = (JD - 2451545)/Cy;
% Orbital elements on 23 Apr
% Earth
aE = (aE + aE_dot*TO)*AU; % 1.496e+8 conversion from astronaumical units
to km
eE = eE + eE dot*TO;
iE = iE + iE_dot*T0;
omE = omE + omE_dot*T0;
wbE = wbE + wbE dot*T0;
LE = LE + LE_dot*TO;
if LE > 360
    while LE > 360
        LE = LE - 360;
    end
elseif LE < O
    while LE < 0
        LE = LE + 360;
        end
end
wE = wbE - omE; % Argument of Perihelion (degree)
ME = LE - wbE; % Mean anomaly (degree)
% Saturn
aS = (aS + aS_dot*TO)*AU;
eS = eS + eS_dot*T0;
iS = iS + iS_dot*T0;
omS = omS + omS_dot*TO;
wbS = wbS + wbS_dot*T0;
LS = LS + LS_dot*T0;
if LS > 360
    while LS > 360
        LS = LS - 360;
        end
elseif LS < 0
    while LS < 0
        LS = LS + 360;
    end
end
wS = wbS - omS;
MS = LS - wbS;
% Mean anomaly of Earth
if iE < 0
    while iE < 0
        iE = iE+360;
    end
elseif iE > 360
    while iE > 360
        iE = iE - 360;
    end
```

end
if ME > 360
while ME > 360

ME = ME - 360;
end
elseif ME < 0
while ME < 0 $\mathrm{ME}=\mathrm{ME}+360$;
end
else
$\mathrm{ME}=\mathrm{ME}$;
end
if wE > 360
while wE > 360
$\mathrm{wE}=\mathrm{wE}-360$;
end
elseif wE < 0 while wE < 0 $\mathrm{wE}=\mathrm{wE}+360$;
end
end
\% Mean anomaly of Saturn
if MS > 360
while MS >360
MS = MS - 360;
end
elseif MS < 0
while MS < 0

MS = MS + 360;
end
else
$M S=M S$
end
if iS < 0
while iS < 0
iS = iS+360;
end
elseif iS > 360
while is > 360
iS = iS - 360;
end
end

```
if wS > 360
    while wS > 360
        wS = wS - 360;
    end
elseif wS < 0
    while wS < 0
        wS = wS + 360;
    end
end
%% Kepler's equation - Eccentric anomaly (Newton-Raphson Method)
diff = 1e-20;
% Earth
erre = 1;
EE = 270; % starting value for eccentric anomaly for Earth
while errE > diff
    EE_old = EE;
    f = EE - eE*sind(EE) - ME;
    df = 1 - eE*cosd(EE);
    EE = EE - f/df;
    errE = abs(EE - EE_old);
end
% Saturn
errS = 1;
ES = MS;
while errS > diff
    ES_old = ES;
    f = ES - eS*sind(ES) - MS;
    df = 1 - eS*cosd(ES);
    ES = ES - f/df;
    errS = abs(ES - ES_old);
end
%% True Anomaly
% Earth
thetaE = 2*atand(sqrt((1+eE)/(1-eE))*tand(EE/2));
if thetaE < 0
    while thetaE < 0
    thetaE = thetaE + 360;
    end
elseif thetaE > 360
    while thetaE > 360
    thetaE = thetaE - 360;
    end
else
    thetaE = thetaE;
end
```

```
thetaS = 2*atand(sqrt((1+eS)/(1-eS))*tand(ES/2));
if thetaS < 0
    while thetaS < 0
    thetaS = thetaS + 360;
    end
elseif thetaS > 360
    while thetaS > 360
        thetas = thetas - 360;
    end
else
    thetas = thetas;
end
%% Coordinate systems
% Earth
hE = sqrt(muS*aE*(1-eE^2)); % Angular momentum (kg*m^2*s^-1)
RpE = ((hE^2/muS)*(1/(1+eE*cosd(thetaE))))*[cosd(thetaE); sind(thetaE); 0];
```

\% Rotation vector
R_omE = [cosd(omE), -sind(omE), 0; sind(omE), cosd(omE), 0; 0, 0, 1];
R_iE = [1, 0, 0; 0, cosd(iE), -sind(iE); 0, sind(iE), cosd(iE)];
R_wE = [cosd(wE), -sind(wE), 0; sind(wE), cosd(wE), 0; 0, 0, 1];
$\mathrm{QE}=\mathrm{R} _o m E * R _i E * R _w E ;$
RE = QE*RpE; \quad \% Heliocentric coordinates
\% Saturn
hS = sqrt(muS*aS*(1-eS^2));
RpS $=\left(h S^{\wedge} 2 / m u S\right) *(1 /(1+e S * \operatorname{cosd}(t h e t a S))) *[\operatorname{cosd}($ thetaS $) ; ~ s i n d(t h e t a S) ; ~ 0] ;$
\% Rotation vector
R_omS = [cosd(omS), -sind(omS), 0; sind(omS), cosd(omS), 0; 0, 0, 1];
R_iS $=[1,0,0 ; 0, \operatorname{cosd}(i S), ~-s i n d(i S) ; ~ 0, ~ s i n d(i S), ~ c o s d(i S)] ;$
R_wS = [cosd(wS), -sind(wS), 0; sind(wS), cosd(wS), 0; 0, 0, 1];
QS = R_omS*R_iS*R_wS;
RS $=$ QS*RpS;
\%\% Finding RA and Declination from Cartesian coordinates
\% Coordinates of Saturn relative to the Earth
$R=R S-R E ;$
$r=\operatorname{sqrt}\left(R(1,1)^{\wedge} 2+R(2,1)^{\wedge} 2+R(3,1)^{\wedge} 2\right) ;$
\% Computing celestial longitude (lam) and celestial latitude (bet)

```
R = RS - RE;
r = sqrt(R(1,1)^2+R(2,1)^2+R(3,1)^2);
    % Computing celestial longitude (lam) and celestial latitude (bet)
bet = asind(R(3,1)/r);
lam = asind(R(2,1)/(r*cosd(bet)));
    % Computing the right accension (delta) and declination (alpha) and epi
epi = 23.5;
delta = asind(sind(bet)*cosd(epi)+cosd(bet)*sind(lam)*sind(epi));
alpha = asind((-
sind(bet)*sind(epi)+cosd(bet)*sind(lam)*cosd(epi))/cosd(delta));
% Converting degree decimal to Hours, minutes and seconds
if alpha < 0
    alpha1 = alpha + 360;
end
alpha1 = alpha1/15;
a_hr = fix(alpha1);
a_min1 = (alpha1 - a_hr)*60;
a_min = fix(a_min1);
a_sec = (a_min}1-a_min)*60
a_sec = fix(a_sec);
% converts degree decimal to degrees, minutes and seconds
d_deg = fix(delta);
d_min1 = (delta-d_deg)*60;
d_min = fix(d_min1);
d_sec = (d_min}1-d_min)*60
d_sec = fix(d_sec);
```

Escola Superior d'Enginyeries Industrial, Aeroespacial i Audiovisual de Terrassa

ESEIAAT
Astrodynamics

Assignment 1 on Reference Frames

Master's degree in Aerospace Engineering
DQ

November 10, 2020

Contents

1 Statement 1
2 Description of the methodology. 3
3 Data and results 5
4 Conclusions 7
A MATLAB code. 8

List of Figures

1 Reference frames 1
2 The Spherical Triangle 2

1 Statement

In this first assignment, we are asked to compute the right ascension and declination of the Cassini spacecraft from Earth, during the Grand Finale atmospheric entry into Saturn. The assignment is divided in two main parts.

1.1 First part: Heliocentric frame

In the first one we determine the ecliptic coordinates once the heliocentric ecliptic $X Y Z$ coordinates of Saturn are computed, given:

$$
\begin{array}{r}
x=r \cos \beta \cos \lambda \\
y=r \cos \beta \sin \lambda \\
z=r \sin \beta \tag{3}
\end{array}
$$

Figure 1: Reference frames

UNIVERSITAT POLITÈCNICA DE CATALUNYA
BARCELONATECH
Escola Superior d'Enginyeries Industrial,
Aeroespacial i Audiovisual de Terrassa

1.2 Second Part: Geocentric frame

In the second activity, we are asked to obtain the declination and the right ascension from the Earth's geocentric frame, solving the spherical triangle shown in Figure 2, composed by:

- Ecliptic Pole (K)
- North Pole (P)
- Saturn position (X)

Using the formulae:

$$
\begin{array}{r}
\sin \delta=\sin \beta \cos \epsilon+\cos \beta \sin \lambda \sin \epsilon \\
\cos \delta \cos \alpha=\cos \beta \cos \lambda \\
\cos \delta \sin \alpha=-\sin \beta \sin \epsilon+\cos \beta \sin \lambda \cos \epsilon \tag{6}
\end{array}
$$

Figure 2: The Spherical Triangle

2 Description of the methodology

The proposed problem will be solved using MATLAB, and the reference data will be obtained from the Jet Propulsion Laboratory's (JPL) Solar System Dynamics database. The main inputs will be the approximate orbital elements of Saturn and Earth, and the desired evaluation time of the event. The procedure is explained in the following section.

2.1 Code structure

The code used to solve the problem is structured in seven different parts, detailed below:

- Definition of the Solar system data
- Sun's mass $M_{\odot}[\mathrm{kg}]$
- Universal gravitational constant $G[\mathrm{~m} 3 / \mathrm{kg} / \mathrm{s} 2]$
- Sun's gravitational standard parameter $\mu_{\odot}[\mathrm{m} 3 / \mathrm{s} 2]$
- Earth's equatorial plane inclination $\epsilon_{\oplus}[\mathrm{rad}]$
- Definition of the evaluation time: Cassini's Grand Finale, real-time downlink initiation.
- Time chose: September 15 at 12:15 PDT (08:15 UTC)
- Transform into Julian Calendar
- Definition of the Keplerian Orbital Elements:
- Definition of the orbital parameters of the planets using JPL's information, for the chosen evaluation time. The data is given as a base Keplerian element value plus a change rate value, referenced to the Julian Century.
* Semi-major axis a [UA]
* Eccentricity e
* Inclination to the ecliptic plane $i_{\epsilon}[\mathrm{deg}]$
* Mean Longitude L [deg]
* Longitude of perihelion $L_{p e}[\mathrm{deg}]$
* Longitude of ascending node $L_{a n}[\mathrm{deg}]$

In addition to the given parameters, some others can be obtained directly from the known data.

* Mean Anomaly M [deg]
* Argument of perihelion $A_{p e}[\mathrm{deg}]$
- Kepler's Equation: Eccentric anomaly.
- Kepler's equation is a transcendental equation, meaning it cannot be solved for the eccentric anomaly (E) algebraically. Numerical analysis and series expansions are generally required to evaluate E. In our case, the Newton-Rhapson
method will be used to solve the equation.
The solver is given a limit error $\left(10^{-7}\right)$ and an iterative process is executed comparing the difference between the previous and actual value until the result has less error than the desired one. The code also allows to select the bisection method, to solve the equation. It also permits the selection of three different initial values of E :

$$
\begin{aligned}
& * E_{0}=M \\
& * E_{0}=\pi \\
& * E_{0}=M+e \cdot \cos (M)
\end{aligned}
$$

- Planet's position vectors.
- Obtain the true anomaly θ from E.
- Calculation of the angular momentum h.
- Calculation of the planet's perifocal radii r.
- Definition of the 313 [$\left.L_{a n} i_{\epsilon} A_{p e}\right]$ rotation matrix.
- Planet's heliocentric frame position vectors.
- Planet's relative position vectors.
- Celestial angular longitude λ and latitude β (see Figure 1 and 2).
- Computation of Saturn's Right Ascension α and declination δ in the geocentric frame.

3 Data and results

The different data values given to and obtained from the code are declared as follows:

- Evaluation time: Cassini's Grand Finale.
- Date: September 15, 12:15 am PDT (08:15 UTC).
- Julian date: 2458011.84375.
- Julian century: 0.1770525.
- Keplerian orbital elements and rate of change:

Element	a	e	I	L	Lpe	Lan
Units	$\mathrm{AU}, \mathrm{AU} / \mathrm{Cy}$	$\mathrm{adim}, 1 / \mathrm{Cy}$	$\mathrm{deg}, \mathrm{deg} / \mathrm{Cy}$			
Earth (base)	1.00000261	0.01671123	-0.00001531	100.46457166	102.93768193	0.0
Earth (rate)	0.00000562	-0.00004392	-0.01294668	35999.37244981	0.32327364	0.0
Saturn (base)	9.53667594	0.05386179	2.48599187	49.95424423	92.59887831	113.66242448
Saturn (rate)	-0.00125060	-0.00050991	0.00193609	1222.49362201	-0.41897216	-0.28867794

Table 1: Approximate keplerian orbital elements data.

Element	a	e	i	L	Lpe	Lan	M	Ape
Units	AU	adim	deg	deg	deg	deg	deg	deg
Earth	1.17705560	0.01670345	-0.002307	354.244632	102.994918	0	251.2497143	102.994918
Saturn	11.2251685	0.05377151	2.4863346	266.399836	92.5246982	113.611313	173.8751377	-21.0866151

Table 2: Evaluated orbital elements.

- Eccentric and true anomalies, angular momentum.

	\mathbf{E}	θ	\mathbf{h}
Units	rad	rad	Mixed
			SI +AU
Earth	4.36940413	-1.92946844	$3.85461287 \times 10^{1} 0$
Saturn	3.04013951	3.04544731	$1.24983013 \times 10^{1} 0$

Table 3: Eccentric, true anomalies and angular momentum.

- Position vectors.
- Perifocal radii:
* $r \oplus=1.183667 \mathrm{AU}$
* $r_{\imath}=11.825659 \mathrm{AU}$
- Heliocentric position vectors:
* $E C L I_{\oplus}=[1.173390961 ;-0.155635898 ; 0.000006268] \mathrm{AU}$
* $E C L I_{\imath}=[-0.611047636 ;-11.807628392 ; 0.229667650] \mathrm{AU}$
- Relative position:
* $E C L I_{\eta_{-} \oplus}=[-1.784438597 ;-11.651992494 ; 0.229661382] \mathrm{AU}$
* $r_{\text {亿- } \oplus}=11.790076 \mathrm{AU}$
- Celestial angular position
$-\beta_{\imath, \oplus}=1.116147 \mathrm{deg}$
$-\lambda_{\imath, \oplus}=261.293113 \mathrm{deg}$

- Geocentric angular position

- Right ascension $\alpha_{\imath, \oplus}=260.602687$ deg
- Declination $\delta_{\imath, \oplus}=-22.036882 \mathrm{deg}$

4 Conclusions

It is possible to check a multitude of different parameters in the HORIZONS web interface of JPL's Solar System Dynamics directory. That way, we can confirm if the obtained results are correct or differ from the actual ephemerides. The input parameters used in the interface are, as stated in the web:

Ephemeris Type: OBSERVER

Target Body: Saturn [699]
Observer Location: Geocentric [500]
Time Span: Start=2017-09-15 08:10, Stop=2017-09-15 08:20, Step=1 m
Table Settings: QUANTITIES $=1,2,18,28,41$
Display/Output: default (formatted HTML)
The shown Right Ascension and Declination are:

- Saturn R.A.: $17 \mathrm{~h} 23 \mathrm{~min} 26.69 \mathrm{~s}=260.8612 \mathrm{deg}$
- Saturn Dec.: -22 ${ }^{\circ}$ 03min 11.0s $=-22.05306$ deg

As we can see, the error is less than 0.1% in both cases. It should be stated that the orbital elements used in our calculations are an approximation, albeit one that gives excellent results, at least when used within JPL's stated time-span for these values, from 1800 AD to 2050 AD.

A MATLAB code

```
clear all
close all
format long
clc
%% Solar system data
Ms = 1.989e30; % Sun's mass [kg]
G = 6.67408e-11; % Gravitational constat [m3/kg/s2]
mu_s = Ms*G; % Sun's gravitational standar parameter [m3/s2]
ie = deg2rad(23.43658); % Equatorial plane inclination [rad]
AU = 149597870700; % [m]
%% Evaluation time (Grand Finale)
% Time when Real-Time downlink is initiated
% September 15, 12:15 am PDT
% September 15, 08:15 UTC
year = 2017;
month = 9;
day = 15;
hour = 8;
min = 15;
sec = 0;
% To Julian calendar
t_string = num2str(year) + "-" + num2str(month) + "-" + num2str(day) + ...
    " "+ ...
        num2str(hour) + ":" + num2str(min) + ":" + num2str(sec);
t = datetime(t_string);
JD = juliandate(t);
JC = ( JD - 2451545.0 ) / 36525;
%% Orbital elements
keplerianElements;
% Semi-major axis [UA]
orbSat.a = Sat.a + Sat.a * JC;
orbEarth.a = Earth.a + Earth.a * JC;
% Eccentricity
orbSat.e = Sat.e + Sat.eR * JC;
orbEarth.e = Earth.e + Earth.eR * JC;
% Inclination to the ecliptic plane [deg]
orbSat.i = Sat.i + Sat.iR * JC;
orbEarth.i = Earth.i + Earth.iR * JC;
```

```
% Mean longitude [deg]
orbSat.L = Sat.L + Sat.LR * JC;
orbEarth.L = Earth.L + Earth.LR * JC;
orbEarth.L = mod(orbEarth.L, 360);
% Longitude of perihelion [deg]
orbSat.lp = Sat.lp + Sat.lpR * JC;
orbEarth.lp = Earth.lp + Earth.lpR * JC;
% Longitude of the ascending node [deg]
orbSat.lan = Sat.lan + Sat.lanR * JC;
orbEarth.lan = Earth.lan + Earth.lanR * JC;
% Mean anomaly [deg]
orbSat.M = orbSat.L - orbSat.lp;
orbEarth.M = orbEarth.L - orbEarth.lp;
orbEarth.M = mod(orbEarth.M, 360);
% Argument of perihelion [deg]
orbSat.ap = orbSat.lp - orbSat.lan;
orbEarth.ap = orbEarth.lp - orbEarth.lan;
%% Kepler's Equation: Eccentric anomaly
% Solving Kepler's Equation [rad] (Assignment 2)
% Solver: 1 -> Newton Raphson
% 2 -> Bisection
% Initial condition: 1 -> EO = M
% 2 -> E0 = 180
% 3 -> E0 = M+e*COS(M)
init = 3;
solver = 2;
if init == 1
    EO_S = orbSat.M;
    EO_E = orbEarth.M;
elseif init == 2
    E0_S = 180;
    EO_E = 180;
elseif init == 3
    E0_S = orbSat.M + orbSat.e*cosd(orbSat.M);
    E0_E = orbEarth.M + orbEarth.e*cosd(orbEarth.M);
end
if solver == 1
    [S_E,kS,tfS] = keplerNRSolve(orbSat.e,orbSat.M,180);
    [E_E,kE,tfE] = keplerNRSolve(orbEarth.e,orbEarth.M,180);
elseif solver == 2
    diff = 0.5;
    [S_E,kS,tfS] = ...
        keplerBisection(orbSat.e,orbSat.M,(1-diff)*E0_S,(1+diff)*E0_S);
```

```
    [E_E,kE,tfE] = ...
        keplerBisection(orbEarth.e,orbEarth.M,(1-diff)*E0_E,(1+diff)*E0_E);
end
% True anomaly
angS = tan(S_E/2) / sqrt((1-orbSat.e)/(1+orbSat.e));
angE = tan(E_E/2) / sqrt((1-orbEarth.e)/(1+orbEarth.e));
Sat_theta = 2*atan(angS);
Earth_theta = 2*atan(angE);
% Angular momentum
hS = sqrt(mu_s*orbSat.a*(1-orbSat.e^2));
hE = sqrt(mu_s*orbEarth.a*(1-orbEarth.e^2));
%% Position vectors
% Rotation matrix
rotSat = rotz(orbSat.lan)*rotx(orbSat.i)*rotz(orbSat.ap);
rotEarth = rotz(orbEarth.lan)*rotx(orbEarth.i)*rotz(orbEarth.ap);
% Instantaneous radii
rSat_mod = hS^2/mu_s/(1+orbSat.e*cos(Sat_theta));
rEarth_mod = hE^2/mu_s/(1+orbEarth.e*cos(Earth_theta));
rSat = rotSat * rSat_mod*[cos(Sat_theta) sin(Sat_theta) 0]';
rEarth = rotEarth * rEarth_mod*[cos(Earth_theta) sin(Earth_theta) 0]';
% Instantaneous velocity
vSat = rotSat * mu_s/hS*[-sin(Sat_theta) orbSat.e+cos(Sat_theta) 0]';
vEarth = rotEarth * mu_s/hE*[-sin(Earth_theta) ..
    orbEarth.e+cos(Earth_theta) 0]';
% Relative position
rSEv = rSat - rEarth;
rSE = norm(rSEv)
%% Angular position
beta = asind(rSEv(3)/rSE);
% Quadran check
if rSEv(3)<0
    beta = 360 + beta;
end
lambda = asind(rSEv(2)/(rSE*cosd(beta)));
% Quadran check
if rSEv(1)<0
    lambda = 180 - lambda;
end
```

```
157 %% Relative Right Ascension and Declination
158
| = asind(sind(beta)*cos(ie) + cosd(beta)*sind(lambda)*sin(ie));
160
161 num = cosd(beta)*cosd(lambda);
den = cosd(\Delta);
raan = acosd(num/den);
raan = 360 - raan;
\Delta
raan
```

```
%% Keplerian orbital elements
% a I I L ...
% AU, AU/Cy rad, rad/Cy deg, deg/Cy deg, deg/Cy ...
    deg, deg/Cy deg, deg/Cy
%-------------------------------------------------------------------------------
Sat.a = 9.53667594;
Sat.aR = -0.00125060;
Sat.e = 0.05386179;
Sat.eR = -0.00050991;
Sat.i = 2.48599187;
Sat.iR = 0.00193609;
Sat.L = 49.95424423;
Sat.LR = 1222.49362201;
Sat.lp = 92.59887831;
Sat.lpR = -0.41897216;
Sat.lan = 113.66242448;
Sat.lanR = -0.28867794;
Earth.a = 1.00000261;
Earth.aR = 0.00000562;
Earth.e = 0.01671123;
Earth.eR = -0.00004392;
Earth.i = -0.00001531;
Earth.iR = -0.01294668;
Earth.L = 100.46457166;
Earth.LR = 35999.37244981
Earth.lp = 102.93768193;
Earth.lpR = 0.32327364;
Earth.lan = 0.0;
Earth.lanR = 0.0;
```

```
function [u,v,w] = velPQW(n,r,E)
    % Velocities in km/s
    % Angular velocity in rev/day
```

```
6 % Distances in km
    nrad = n*2*pi/(24*3600); % [rad/s]
    u = -r*nrad*sind(E);
    v = r*nrad*cosd(E);
    w = 0;
end
```

```
function [E,k,tf] = keplerNRSolve(e,M,E0)
% INPUTS:
% e = eccentricity [adim]
% M = mean anomaly [deg]
% EO = initial condition [deg]
%
% OUTPUTS:
% E = eccentric anomaly [rad]
% k = number of iterations
% tf = solving time [s]
M = deg2rad (M);
E0 = deg2rad(EO);
err = 10e-7; % Error
diff = 1; % Difference (f/f')
k = 1; % Iteration counter
E EO; % Eccentric anomaly init.
tic
while (abs(diff) > err)
    Fun = E - e*sin(E) - M; % Mean anomaly vs Eccentric anomaly
    dFun = 1 - e*\operatorname{cos(E); % Derivative}
    if(abs(dFun) < err)
        break;
    else
        diff = Fun/dFun;
        E = E - diff;
        k = k+1;
    end
end
tf = toc;
end
```

```
function [Ep,k,tf] = keplerBisection(e,M,Ea,Eb)
% INPUTS:
% e = eccentricity [adim]
% M = mean anomaly [deg]
% Ea = Lower boundary E [deg]
% Eb = Upper boundary E [deg]
%
% OUTPUTS:
% Ep = eccentric anomaly [rad]
% k = number of iterations
% tf = solving time [s]
Ea = deg2rad(Ea);
Eb = deg2rad(Eb);
M = deg2rad(M);
f = @(E) (E - e*sin(E) - M);
k = 1;
tic
if f(Ea)*f(Eb)>0
    disp('Not valid initial guesses')
else
    Ep = (Ea + Eb)/2;
    err = abs(f(Ep));
    while err > le-7
        if f(Ea)*f(Ep)<0
            Eb = Ep;
        else
            Ea = Ep;
        end
        Ep = (Ea + Eb)/2;
        err = abs(f(Ep));
        k = k+1;
    end
end
tf = toc;
end
```

Name:
DNI or Passport:

Instructions for all attendees:
There is ONLY one correct answer on each question.
Every correctly answered question adds +1.0 point.
Every incorrectly answered question discounts -0.25 points
30 minutes of maximum time to complete the test.
No lecture slides are allowed or Internet resources.

Additional Instructions for remote attendees:
Highlight in bold the correct answer.
After completion, upload the exam to Atenea.
The camera and microphone must be switched on during the entire exam duration.
Only the mouse can be used during the exam to make the text bold.
$0)$ This is a question sample on how to return the exam.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above
2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c) A timescale based on an atomic oscillator
d) None of the above
3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above
4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
5) Which statement is true before and after a gravity assist manoeuvre:
a) The velocity of the spacecraft relative to the planet is maintained constant
b) The velocity of the planet relative to the Sun is maintained constant
c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above
6) Changing the inclination of the orbital plane is more fuel-efficient:
a) In the line of nodes, where the spacecraft intersects the plane of reference
b) At the periapsis, where the velocity is greatest
c) At the apoapsis, where the velocity is lowest
d) None of the above
7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
a) Hyperbolic transfer with chemical propulsion
b) Hohmann transfer with chemical propulsion
c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion
8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
b) In the line between the primary mass and secondary mass, opposite to the secondary mass
c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass
9) The ascending order of the energy of a Keplerian orbit is:
a) Circle, Ellipse, Parabola, Hyperbola
b) Hyperbola, Parabola, Ellipse, Circle
c) Ellipse, Circle, Hyperbola, Parabola
d) None of the above
10) In a Keplerian orbit representation, the ascending node is:
a) The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors
c) The angle between the orbit plane and a plane of reference (e.g. equator)
d) None of the above
11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23 h 56 minutes
c) Precession, with a period of $\mathbf{2 5 , 7 6 5}$ years and Nutation, with a period of $\mathbf{1 8 . 6}$ years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23 h 56 minutes
12) The effect of the Drag on the orbit
a) Increase of eccentricity, decrease of perigee height
b) Decrease of eccentricity, decrease of perigee height
c) Decrease of eccentricity, decrease of apogee height
d) Increase of eccentricity, decrease of apogee height
13) The period of the Geosynchronous Equatorial Orbit (GEO) is
a) A sidereal day (i.e. 23 h 56 m 4.09 s)
b) A solar day (i.e. 24 h)
c) Proportional to the synodic period
d) None of the above
14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
c) The inclination
d) The eccentricity
15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the Earth.
b) Corresponds to a great circle
c) Repeats the same ground track over and over
d) All of the above
16) A constellation of satellites is
a) Is composed by satellites of very different design
b) Has a common objective (e.g. communication, navigation, science).
c) Is composed by satellites in different orbit each
d) All of the above
17) The Lambert theorem states that the transfer time of a body moving between two points on a conic trajectory
a) depends on the chord joining these two positions
b) is independent of the direction of motion
c) depends on the conic eccentricity joining these two positions
d) None of the above
18) When solving the Lambert problem by Simo's method, the geometric meaning of \sqrt{z} corresponds to
a) The eccentricity of the solution orbit
b) half of the variation in eccentric anomaly between P_{1} and $P_{\mathbf{2}}$ on the solution orbit
c) half of the variation in true anomaly between P_{1} and P_{2} on the solution orbit
d) None of the above
19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. $\Delta \mathrm{V}, \Delta \theta)$ for various combinations of launch time and time-of-flight Δt
b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard the spacecraft.
d) Every pair of launch time and time-of-flight Δt outputs a different result (e.g. $\Delta V, \Delta \theta$) in the PCP, being no repeated values in the PCP.
20) The Broken Plane Manoeuvre is a consequence of
a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low $\Delta \mathrm{V}$ requirements of polar transfers
d) None of the above
21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist maneuver
c) To preliminary design interplanetary missions by means of gravity assists
d) None of the above
22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above
23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem
d) All of the above
24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun
c) Its size is proportional to the distance from the planet to the Sun
d) None of the above
25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
b) Can require derivatives of first, second or third order
c) The initialization guess must be good enough to assure numerical convergence
d) None of the above

Question 1 (4 points):
Compute the ΔV and necessary time to reduce by half the orbital period of a synchronous satellite with Neptune rotation using an inward Hohman transfer.

Assuming

$$
\begin{aligned}
\mu_{N} & =6.836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \\
R_{N} & =24764 \mathrm{~km}
\end{aligned}
$$

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h

$$
\begin{aligned}
\mathrm{T} & =2 \pi \sqrt{\frac{a^{3}}{\mu}} \\
a & =\sqrt[3]{\mu_{N}\left(\frac{T}{2 \pi}\right)^{2}}=\sqrt[3]{6.836529 \cdot 10^{15} \cdot\left(\frac{16.11 \cdot 3600}{2 \pi}\right)^{2}}=83513625.04 \mathrm{~m} \\
h & =a-R_{N}=83514 \cdot 10^{3}-24764 \cdot 10^{3}=58749625.04 \mathrm{~m}=58749.63 \mathrm{~km}
\end{aligned}
$$

b) Determine the final semi-major axis of the final semi-synchronous orbit

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{a^{3}}{\mu}} \\
& a=\sqrt[3]{\mu_{N}\left(\frac{T}{2 \pi}\right)^{2}}=\sqrt[3]{6.836529 \cdot 10^{15} \cdot\left(\frac{16.11 \cdot 3600}{4 \pi}\right)^{2}}=52610287.07 \mathrm{~m}
\end{aligned}
$$

c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:

$$
\begin{aligned}
& e_{\text {trans }}=\frac{r_{0}-r_{f}}{r_{0}+r_{f}}=\frac{83513625.04-52610287.07}{83513625.04+52610287.07}=0.227 \\
& a_{\text {trans }}=\frac{r_{0}+r_{f}}{2}=\frac{83513625.04+52610287.07}{2}=68061956.05 \mathrm{~m} \\
& \Delta t_{\text {trans }}=\frac{T_{\text {trans }}}{2}=\pi \sqrt{\frac{a_{\text {trans }}^{3}}{\mu}}=\pi \sqrt{\frac{68061956.05^{3}}{6.836529 \cdot 10^{15}}}=21334.81 \mathrm{~s}=355.58 \mathrm{~min}=5.9263 \mathrm{~h}
\end{aligned}
$$

d) Determine the initial, final and total required $\Delta \mathrm{V}$, plotting (sketching) where each $\Delta \mathrm{V}$ takes places, and its direction:

$$
\begin{aligned}
& V_{0}=\sqrt{\frac{\mu}{r_{0}}}=\sqrt{\frac{6.836529 \cdot 10^{15}}{83513625.04}}=9047.72 \mathrm{~m} / \mathrm{s} \\
& V_{a}=\sqrt{\frac{2 \cdot \mu}{r_{0}}-\frac{\mu}{a_{\text {trans }}}}=\sqrt{\frac{2 \cdot 6.836529 \cdot 10^{15}}{83513625.04}-\frac{6.836529 \cdot 10^{15}}{68061956.05}}=7954.67 \mathrm{~m} / \mathrm{s} \\
& V_{p}=\sqrt{\frac{2 \cdot \mu}{r_{f}}-\frac{\mu}{a_{\text {trans }}}}=\sqrt{\frac{2 \cdot 6.836529 \cdot 10^{15}}{52610287.07}-\frac{6.836529 \cdot 10^{15}}{68061956.05}}=12627.25 \mathrm{~m} / \mathrm{s}= \\
& V_{f}=\sqrt{\frac{\mu}{r_{f}}}=\sqrt{\frac{6.836529 \cdot 10^{15}}{52610287.07}}=11399.41 \mathrm{~m} / \mathrm{s} \\
& \Delta V_{1}=V_{a}-V_{0}=7954.67-9047.72=-1093.05 \mathrm{~m} / \mathrm{s} \\
& \Delta V_{2}=V_{p}-V_{a}=11399.41-12627.25=-1227.84 \mathrm{~m} / \mathrm{s} \\
& \Delta V_{T}=\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right|=1093.05+1227.84=2320.89 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

e) Assuming a solid chemical propulsion system of $\mathrm{I}_{\mathrm{sp}}=300 \mathrm{~s}$, compute the required mass fraction of propellant to perform such maneuver

$$
\frac{\Delta m}{m_{0}}=1-e^{-\frac{\Delta V}{I_{s p} \cdot g_{S L}}}=1-e^{-\frac{2320.89}{300 \cdot 9.81}}=0.5492
$$

Question 2 (2 points):
A geocentric parabolic orbit has a perigee radius of 6600 km
Assuming

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=6378 \mathrm{~km} \\
& \mu_{\mathrm{E}}=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a) Determine the flight time from $\theta=-90^{\circ}$ to $\theta=+90^{\circ}$

The orbit equation, particularized at the perigee yields the angular momentum vector:

$$
\begin{aligned}
& \mathrm{r}=\frac{h^{2}}{\mu} \frac{1}{1+\cos \theta} \\
& \mathrm{r}_{\mathrm{p}}=\frac{h^{2}}{\mu_{\mathrm{E}}} \frac{1}{1+\cos 0} \\
& h=\sqrt{2 \cdot \mathrm{r}_{\mathrm{p}} \cdot \mu_{\mathrm{E}}}=\sqrt{2 \cdot 6600 \cdot 10^{3} \cdot 3.986 \cdot 10^{14}}=72536335722.17 \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

The Barker's equation, particularized at each true anomaly

$$
\begin{aligned}
& \mathrm{M}_{\theta=90}=\frac{1}{2} \tan \left(\frac{90}{2}\right)+\frac{1}{6} \tan ^{3}\left(\frac{90}{2}\right)=\frac{1}{2}+\frac{1}{6}=\frac{2}{3} \mathrm{rad} \\
& \mathrm{M}_{\theta=-90}=\frac{1}{2} \tan \left(\frac{-90}{2}\right)+\frac{1}{6} \tan ^{3}\left(\frac{-90}{2}\right)=-\frac{1}{2}-\frac{1}{6}=-\frac{2}{3} \mathrm{rad}
\end{aligned}
$$

Then

$$
\begin{gathered}
\frac{\mu^{2}}{\mathrm{~h}^{3}}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\mathrm{M}_{2}-\mathrm{M}_{1} \\
\Delta \mathrm{t}=\frac{\mathrm{M}_{2}-\mathrm{M}_{1}}{\frac{\mu^{2}}{\mathrm{~h}^{3}}=\frac{\frac{2}{3}-\left(-\frac{2}{3}\right)}{\frac{\left(3.986 \cdot 10^{14}\right)^{2}}{(7253633522.17)^{3}}}=3202.80 \mathrm{~s}=53.38 \mathrm{~min}=0.88967 \mathrm{~h}} \mathrm{~h}
\end{gathered}
$$

b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

We known that the parabolic mean anomaly can be directly computed by the time since the periapsis:

$$
\begin{aligned}
& \frac{\mu^{2}}{\mathrm{~h}^{3}} \mathrm{t}=M \\
& M=\frac{\mu_{\mathrm{E}}^{2}}{\mathrm{~h}^{3}} \mathrm{t}=\frac{\left(3.986 \cdot 10^{14}\right)^{2}}{(72536335722.17)^{3}} 24 \cdot 3600=35.96 \mathrm{rad}=2060.84^{\circ}
\end{aligned}
$$

That can be related to the true anomaly by means of:

$$
\begin{aligned}
& \tan \left(\frac{\theta}{2}\right)=\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{\frac{1}{3}}-\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{-\frac{1}{3}} \\
& \tan \left(\frac{\theta}{2}\right)=\left(3 \cdot 35.96+\sqrt{(3 \cdot 35.96)^{2}+1}\right)^{\frac{1}{3}}-\left(3 \cdot 35.96+\sqrt{(3 \cdot 35.96)^{2}+1}\right)^{-\frac{1}{3}} \\
& \tan \left(\frac{\theta}{2}\right)=5.83 \mathrm{rad} \\
& \theta=160.54^{\circ}
\end{aligned}
$$

Hence, we can obtain the distance from the geocenter:

$$
\mathrm{r}=\frac{h^{2}}{\mu} \frac{1}{1+\cos \theta}=\frac{72536335722.17^{2}}{3.986 \cdot 10^{14}} \frac{1}{1+\cos 160.54}=231047912.72 \mathrm{~m}
$$

Astrodynamics ESEIAAT UPC
Name: LN
DNI or Passport:
Instructions for all attendees:

This theoretical part weights 4 points out of 10 in the final exam
There is ONLY one correct answer on each question.
Every correctly answered question adds +1.0 point.
Every incorrectly answered question discounts -0.25 points
30 minutes of maximum time to complete the test.
No lecture slides are allowed or Internet resources.
Additional Instructions for remote attendees:
Highlight in bold the correct answer.
After completion, email-me the exam.
The camera and microphone must be switched on during the entire exam duration.
Only the mouse can be used during the exam to make the text bold.

0) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above
2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c) A timescale based on an atomic oscillator
d) None of the above
3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above
4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
5) Which statement is true before and after a gravity assist manoeuvre:
a) The velocity of the spacecraft relative to the planet is maintained constant
(b) The velocity of the planet relative to the Sun is maintained constant
c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above
6) Changing the inclination of the orbital plane is more fuel-efficient:
(a) In the line of nodes, where the spacecraft intersects the plane of reference
(i) At the periapsis, where the velocity is greatest \qquad
c) At the apoapsis, where the velocity is lowest
d) None of the above
7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
a) Hyperbolic transfer with chemical propulsion
b) Hohmann transfer with chemical propulsion
c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion
8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
b) In the line between the primary mass and secondary mass, opposite to the secondary mass
c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass
9) The ascending order of the energy of a Keplerian orbit is:

- (a) Circle, Ellipse, Parabola, Hyperbola
b) Hyperbola, Parabola, Ellipse, Circle

c) Ellipse, Circle, Hyperbola, Parabola
d) None of the above

10) In a Keplerian orbit representation, the ascending node is:
a) The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors
c) The angle between the orbit plane and a plane of reference (e.g. equator)
d) None of the above
11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23 h 56 minutes
c) Precession, with a period of 25,765 years and Nutation, with a period of 18.6 years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23 h 56 minutes
12) The effect of the Drag on the orbit
a) Increase of eccentricity, decrease of perigee height
(b) Decrease of eccentricity, decrease of perigee height
c) Decrease of eccentricity, decrease of apogee height
d) Increase of eccentricity, decrease of apogee height
13) The period of the Geosynchronous Equatorial Orbit (GEO) is
a) A sidereal day (i.e. 23 h 56 m 4.09 s)
b) A solar day (ie. 24 h)
c) Proportional to the synodic period
d) None of the above
14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
c) The inclination
d) The eccentricity
15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the Earth.
b) Corresponds to a great circle
c) Repeats the same ground track over and over
d) All of the above
16) A constellation of satellites is
a) Is composed by satellites of very different design

- b) Has a common objective (e.g. communication, navigation, science).
c) Is composed by satellites in different orbit each
d) All of the above

17) The Lambert theorem states that the transfer time of a body moving between two points on a conic trajectory
(a) depends on the chord joining these two positions
b) is independent of the direction of motion

c) depends on the conic eccentricity joining these two positions
d) None of the above
18) When solving the Lambert problem by Simon's method, the geometric meaning of \sqrt{z} corresponds to
a) The eccentricity of the solution orbit
b) half of the variation in eccentric anomaly between P_{1} and P_{2} on the solution orbit
c) half of the variation in true anomaly between P_{1} and P_{2} on the solution orbit
d) None of the above
19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. $\Delta V, \Delta \theta$) for various combinations of launch time and time-of-flight Δt
(b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard the spacecraft.
d) Every pair of launch time and time-of-flight Δ t outputs a different result (e.g. $\Delta \mathrm{V}, \Delta \theta$) in the PCP, being no repeated values in the PCP.

20) The Broken Plane Manoeuvre is a consequence of
a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low $\Delta \mathrm{V}$ requirements of polar transfers
d) None of the above
21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist maneuver
c) To preliminary design interplanetary missions by means of gravity assists
d) None of the above
22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above
23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem
d) All of the above
24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun
c) Its size is proportional to the distance from the planet to the Sun
d) None of the above
25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
b) Can require derivatives of first, second or third order
c) The initialization guess must be good enough to assure numerical convergence
d) None of the above

Astrodynamics ESEIAAT UPC
Name: LN
DNI or Passport:

January 2021
Final Exam

Question 1 (4 points):

Compute the ΔV and necessary time to reduce by half the orbital period of a synchronous satellite with Neptune rotation using an inward Hohman transfer.

Assuming

$$
\begin{aligned}
& \mu_{N}=6.836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \\
& R_{N}=24764 \mathrm{~km}
\end{aligned}
$$

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h
b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0} / 2$)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required ΔV, plotting (sketching) where each ΔV takes places, and its direction:
e) Assuming a solid chemical propulsion system of $I_{s p}=300 \mathrm{~s}$, compute the required mass fraction of propellant to perform such maneuver.

Question 2 (2 points):
A geocentric parabolic orbit has a perigee radius of 6600 km
Assuming

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=6378 \mathrm{~km} \\
& \mu_{\mathrm{E}}=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a) Determine the flight time from $\theta=-90^{\circ}$ to $\theta=+90^{\circ}$
b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

FIMAL ASTRODYMAMICS

1. $\Delta V ? T h$
$\left.\mu_{i v}=6,836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2}\right\}$ Hohnain TreLsgfen inword
$R_{N}=24764 \mathrm{~km}$
a) orsit inc $=0^{\circ}$ mat cinculon orbit

$$
\begin{aligned}
& \text { a) oisit inc }=0 \text { mal cincolan arbit } \\
& T=16,11 h=57996 \mathrm{~s} \rightarrow T=2 \pi \sqrt{\frac{a^{3}}{\mu}} \rightarrow a=\sqrt[3]{\mu \frac{T^{2}}{4 \pi^{2}}}=\sqrt[3]{\mu \cdot N \cdot \frac{57996^{2}}{4 \pi^{2}}} \\
& a_{r}=83,5136 \cdot 10^{6} \cdot m ; 0.5
\end{aligned}
$$

$$
\begin{aligned}
& r_{\text {pakiLs }}=R_{N}+h=24764 \cdot 10^{3}+h \\
& a_{\text {hous }}=\frac{r_{0}+r_{1}}{2} \rightarrow a_{\text {trins }}=\frac{R_{N}+2 N+h}{2} \rightarrow h=29 \text { tras }-2 R_{N} \\
& h=117,4792 \cdot 10^{7} \mathrm{l} \rightarrow h=117499,2 \mathrm{~km}
\end{aligned}
$$

b) find semi urapo cavs if Tg/2
if $T_{1}=T_{0} / 2$ then $a_{T_{1}<n s}$

$$
\begin{aligned}
& |a|=\frac{\mu_{N}}{2 V_{\Delta: 1}^{2}} \rightarrow v_{\text {boiN }}=\Delta V_{1}=\sqrt{\frac{2 \mu_{N}}{r_{D}}-\frac{N_{N}}{a_{\text {Tans }}}}-\sqrt{\frac{\mu_{N}}{r_{0}}}: a_{T}=\sqrt[3]{\mu_{N} \frac{(T / 2)^{2}}{4 \pi^{2}}}=52,61 \cdot 10^{\circ} \\
& V_{\text {boiv }}=\sqrt{\frac{2 N_{N}}{2 N}-\frac{\mu_{N}}{a_{T A N S}}}-\sqrt{\frac{\mu_{N}}{R_{N}}} \rightarrow V_{R_{N N}}=393 \mathrm{~S}, \mathrm{c}_{122} \mathrm{~m} / \mathrm{s} \\
& |a|=\frac{\mu_{N}}{2 V_{00}:} \rightarrow a=221103,647 \mathrm{~km}
\end{aligned}
$$

c) zuenthicily arr Δt

$$
e_{t}=1+\frac{r_{P} V_{0}{ }^{2}}{\mu_{N}}=1+\frac{\left(R_{N}+h\right) V_{N D D}^{2}}{\mu_{N}} \rightarrow e_{\text {tachs }}=1,3217
$$

Final AStrodynamicis
2. zeviontic prosoblic onbit

$$
r_{p}=66000 \mathrm{~km}
$$

\downarrow
RE: 6378 km
$\mu_{x=}=3,986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}$
a) Inght tibue ham $\theta=90^{\circ}$ to $8-90^{\circ}$

$$
\begin{aligned}
& t=24 h=864005 \\
& M=\frac{N^{2}}{h^{3}} \cdot t=\frac{\left(3,986 \cdot 10^{14}\right)^{2}}{\left(7,2536 \cdot 10^{10}\right)^{3}} \cdot 86400 \rightarrow M=35,9689 \\
& M=\frac{1}{2} \tan \left(\frac{\theta}{2}\right)+\frac{1}{6} \tan ^{3}\left(\frac{\theta}{2}\right) \rightarrow+2\left(\frac{\theta}{2}\right)=\left(3 M+\sqrt{(34)^{2}+1}\right)^{1 / 3}-\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{-1 / 3} \\
& \tan \left(\frac{\theta}{2}\right)=\left(3 \cdot 35,9689+\sqrt{(3 \cdot 35,9689)^{2}+1}\right)^{1 / 3}-\left(3 \cdot 95,7689+\sqrt{(3 \cdot 35,968 \cdot 1)^{2}+1}\right)^{-1 / 3}
\end{aligned}
$$

$$
\tan \left(\frac{\theta}{2}\right)=5,8316 \rightarrow \theta=2 \cdot \operatorname{actan}(5,8316) \rightarrow \theta=160,539^{\circ}
$$

$$
r=\frac{P}{1+\cos \theta}=\frac{h^{2}}{\mu} \frac{1}{1+2 \cos \theta}=\frac{13200 \cdot 10^{3}}{1+\cos (160,539)} \rightarrow r=231045,871 \mathrm{~km}
$$

$$
\begin{aligned}
& \Delta \theta=180^{\circ} \\
& p=r_{p} \cdot 2=13200 \mathrm{~km} \\
& h=\sqrt{p \mu(1+\cos \theta)}=\left[\theta=90^{11}\right]=\sqrt{p \mu}=\sqrt{13200 \cdot 10^{3} \cdot 3,786 \cdot 10^{14}} \rightarrow h=7,2536 \cdot 10^{10^{10} \mathrm{~kg}^{2}} \mathrm{~s} \\
& M=\frac{1}{2} \tan \left(\frac{\theta}{2}\right)+\frac{1}{6} \tan ^{3}\left(\frac{\theta}{2}\right)=\left[\theta=90^{\circ}\right]=\frac{1}{2}+\frac{1}{6}=2 / 3 \\
& t=\frac{M h^{3}}{\mu^{2}}=\frac{2 / 3\left(7,2536 \cdot 10^{10}\right)^{3}}{\left(3,786 \cdot 10^{14}\right)^{2}}=1,6014 \cdot 10^{3} \mathrm{~s} \rightarrow \text { if } t \text { is hom } 0^{\circ} \rightarrow 90^{\circ} \text {, then } \\
& \text { for }-90^{\circ} \rightarrow 90^{\circ} \quad t_{+}=2 t \\
& t_{t}=2 \cdot t=2 \cdot 1,6014 \cdot 10^{3} \mathrm{~s} \rightarrow t_{t}=53,38 \mathrm{~min}
\end{aligned}
$$

This theoretical part weights 4 points out of 10 in the final exam
There is ONLY one correct answer on each question.
Every correctly answered question adds +1.0 point.
Every incorrectly answered question discounts -0.25 points
30 minutes of maximum time to complete the test.
No lecture slides are allowed or Internet resources.
Additional Instructions for remote attendees:
Highlight in bold the correct answer.
After completion, email-me the exam.
The camera and microphone must be switched on during the entire exam duration.
Only the mouse can be used during the exam to make the text bold.
0) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above
2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
c) A timescale based on an atomic oscillator

d) None of the above
3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time
d) None of the above
4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
5) Which statement is true before and after a gravity assist manoeuvre:
a) The velocity of the spacecraft relative to the planet is maintained constant
b) The velocity of the planet relative to the Sun is maintained constant
c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above
6) Changing the inclination of the orbital plane is more fuel-efficient:
a) In the line of nodes, where the spacecraft intersects the plane of reference
b) At the periapsis, where the velocity is greatest
c) At the apoapsis, where the velocity is lowest

None of the above
7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
a) Hyperbolic transfer with chemical propulsion
(b) Hohmann transfer with chemical propulsion
c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion
8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
b) In the line between the primary mass and secondary mass, opposite to the secondary mass

c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass
9) The ascending order of the energy of a Keplerian orbit is:
(a) Circle, Ellipse, Parabola, Hyperbola
b) Hyperbola, Parabola, Ellipse, Circle
c) Ellipse, Circle, Hyperbola, Parabola

d) None of the above
10) In a Keplerian orbit representation, the ascending node is:
(a) The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors
ac) The angle between the orbit plane and a plane of reference (e.g. equator)
d) None of the above
11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23 h 56 minutes
(C) Precession, with a period of 25,765 years and Nutation, with a period of 18.6 years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23 h 56 minutes
12) The effect of the Drag on the orbit
a) Increase of eccentricity, decrease of perigee height
b) Decrease of eccentricity, decrease of perigee height
(c) Decrease of eccentricity, decrease of apogee height
d) Increase of eccentricity, decrease of apogee height

13) The period of the Geosynchronous Equatorial Orbit (GEO) is
(a) A sidereal day (i.e. 23 h 56 m 4.09 s)
b) A solar day (ie. 24 h)
c) Proportional to the synodic period
d) None of the above
14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
(c) The inclination
d) The eccentricity

15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the Earth.
b) Corresponds to a great circle
C) Repeats the same ground track over and over
d) All of the above
16) A constellation of satellites is
a) Is composed by satellites of very different design
b) Has a common objective (e.g. communication, navigation, science).
c) Is composed by satellites in different orbit each
d) All of the above
17) The Lambert theorem states that the transfer time of a body moving between two points on a conic trajectory
(al) depends on the chord joining these two positions
b) is independent of the direction of motion
c) depends on the conic eccentricity joining these two positions
d) None of the above
18) When solving the Lambert problem by Simon's method, the geometric meaning of \sqrt{Z} corresponds to
a) The eccentricity of the solution orbit
b) half of the variation in eccentric anomaly between P_{1} and P_{2} on the solution orbit
half of the variation in true anomaly between P_{1} and P_{2} on the solution orbit
d) None of the above
19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. $\Delta \mathrm{V}, \Delta \theta$) for various combinations of launch time and time-of-flight Δt
b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard the spacecraft.
(d)) Every pair of launch time and time-of-flight Δ t outputs a different result (egg. $\Delta V, \Delta \theta$)
 in the PCP, being no repeated values in the PCP.
20) The Broken Plane Manoeuvre is a consequence of
(a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low ΔV requirements of polar transfers
d) None of the above
21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist maneuver
(C) To preliminary design interplanetary missions by means of gravity assists
d) None of the above
22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above
23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem
d) All of the above
24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun

c) Its size is proportional to the distance from the planet to the Sun
d) None of the above
25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
b) Can require derivatives of first, second or third order
(c) The initialization guess must be good enough to assure numerical convergence

d) None of the above

Astrodynamics ESEIAAT UPC

Name: TR
DNI or Passport:

January 2021
Final Exam

Question 1 (4 points):

Compute the ΔV and necessary time to reduce by half the orbital period of a synchronous satellite with Neptune rotation using an inward Hohman transfer.

Assuming

$$
\begin{aligned}
\mu_{N} & =6.836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \\
R_{N} & =24764 \mathrm{~km}
\end{aligned}
$$

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h
b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0} / 2$)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required ΔV, plotting (sketching) where each ΔV takes places, and its direction:
e) Assuming a solid chemical propulsion system of $\mathrm{I}_{\mathrm{sp}}=300 \mathrm{~s}$, compute the required mass fraction of propellant to perform such maneuver.

Question 2 (2 points):
A geocentric parabolic orbit has a perigee radius of 6600 km
Assuming

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=6378 \mathrm{~km} \\
& \mu_{\mathrm{E}}=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a) Determine the flight time from $\theta=-90^{\circ}$ to $\theta=+90^{\circ}$
b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

Question 2

$$
\begin{aligned}
& P=6.600 \mathrm{~km} . \\
& R E=6378 \mathrm{~km} \\
& \mu E=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a)

$$
\begin{aligned}
& r p=6,6 \cdot 10^{6} \mathrm{~m} \rightarrow p=r p \cdot 2=13^{\prime} 2 \cdot 10^{6} \mathrm{~m} \\
& h=\sqrt{p \cdot \mu}=7 \cdot 2536 \cdot 10^{10} \\
& t \rightarrow \theta_{1}=-90^{\circ}, \theta_{2}=90^{\circ} \rightarrow \Delta \theta=180^{\circ} \\
& t_{1} \Rightarrow 0-90^{\circ} \Rightarrow r=\frac{p}{1 \cos \theta}=25^{\prime} 956 \cdot 10^{6} \mathrm{~m} \\
& M=\frac{1}{2} \operatorname{tg}\left(\frac{\theta}{2}\right)+\frac{1}{6} \operatorname{tg}^{3}\left(\frac{0}{2}\right)=\frac{1}{2}+\frac{1}{6}=\frac{2}{3} \\
& t \Lambda=\frac{M \cdot h^{3}}{\mu^{2}}=1^{1} 6014 \cdot 10^{3} \mathrm{~s} \\
& t t=2 t_{1}=30_{0} 202^{\prime} 8 \mathrm{~s}=6^{\prime} 88974 .
\end{aligned}
$$

b)

$$
\begin{aligned}
& t=24 h=86400 \mathrm{~s} \\
& M=\frac{\mu^{2}}{h^{3}} \cdot t=35.8607 \\
& \theta=2 \cdot \operatorname{atg}\left(\left(3 \pi+\sqrt{(3 \mu)^{2}+1}\right)^{(1 / 3)}-\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{(-1 / 3)}\right) \\
& \theta=2,8016 \mathrm{rad} \rightarrow 160,5 R^{\circ} \\
& r=\frac{P}{1+\cos \theta} \quad(r, \theta)= \\
& r=2,3057 \cdot 10^{8} \mu \quad\left(2,3057 \cdot 10^{8}, 160,52^{\circ}\right)
\end{aligned}
$$

Que sion 4
a) $i=0$
circular orbit $\rightarrow e=0$
$4 ? \rightarrow$ syncro with $T=16.11 \mathrm{k} \rightarrow$

$$
\begin{array}{ll}
T=\frac{2 \pi}{u} \\
u=\sqrt{\mu} / a^{3}
\end{array} \quad T=\frac{2 \pi}{\sqrt{\frac{\mu}{a^{3}}}}
$$

ok!

$$
\sqrt{\frac{\mu}{a^{3}}}=\frac{2 \pi}{T}
$$

$$
\begin{aligned}
& (R N+K)= \\
& R_{N}+h=a \\
& h=a-R N \\
& a^{3}=\frac{\mu}{\left(\frac{2 \pi}{T}\right)^{2}} \\
& h=\frac{5,875 \cdot 18^{7} / 4}{L} \\
& \begin{array}{r}
a=\sqrt[3]{\frac{\mu}{\left(\frac{2 \pi}{T}\right)^{2}}}=8,3514 \times 10^{7} \\
m .
\end{array}
\end{aligned}
$$

b)

$$
\begin{aligned}
& T_{f}=T_{0} / 2=28998 \mathrm{~s} . \\
& a_{N}=\sqrt[3]{\frac{\mu_{N}}{\left(\frac{2 \pi}{T_{4}}\right)^{2}}}=5,261 \cdot 10^{7} \mathrm{~m}
\end{aligned}
$$

c)

$$
a_{2}=r_{p}=a(1-e)=\left[\begin{array}{l}
-e=\frac{r p}{a}=\frac{\left(\frac{p}{4}\right.}{a}-1 \\
\frac{r p}{a}=(1-e) \quad e=-\left(\frac{r}{a}-1\right) \\
e=-\left(\frac{R_{N+h}}{a_{H}}-1\right)
\end{array}\right.
$$

c) $\begin{gathered}\text { es } \\ \text { and } \\ \Delta t\end{gathered}$

$$
\Delta v=\left|\Delta v_{1}\right|+\left|\Delta v_{2}\right|
$$

e) $\quad \frac{\Delta m_{m}}{m_{0}}=1-e \frac{\Delta V}{I s p \cdot g_{s L}}$

Es aplicar la formua si sabés $\Delta V i a$.
0.5.

2 tangencial impulses at $\theta=0$ and Periapsis $\theta=180^{\circ}$ 6.5 .

DNI or Passport:
Instructions for all attendees:

This theoretical part weights 4 points out of 10 in the final exam
There is ONLY one correct answer on each question.
Every correctly answered question adds +1.0 point.
Every incorrectly answered question discounts -0.25 points
30 minutes of maximum time to complete the test.
No lecture slides are allowed or Internet resources.
Additional Instructions for remote attendees:
Highlight in bold the correct answer.
After completion, email-me the exam.
The camera and microphone must be switched on during the entire exam duration.
Only the mouse can be used during the exam to make the text bold.
0) This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
b) To have only one central body acting on a given time \qquad
C) To have propulsion acting during the cruise phase
d) None of the above
2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
(c) A timescale based on an atomic oscillator

d) None of the above
3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
(a)) Is lower or equal than the latitude of the launch site
b) Is greater or equal than the latitude of the launch site
c) Depends on the launch time

d) None of the above
4) In the two body problem, which of the Keplerian elements are not constant?
a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node
d) None of the above
5) Which statement is true before and after a gravity assist manoeuvre:
a) The velocity of the spacecraft relative to the planet is maintained constant
b) The velocity of the planet relative to the Sun is maintained constant

c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above
6) Changing the inclination of the orbital plane is more fuel-efficient:
(a) In the line of nodes, where the spacecraft intersects the plane of reference
b) At the periapsis, where the velocity is greatest

c) At the apoapsis, where the velocity is lowest
d) None of the above
7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
a) Hyperbolic transfer with chemical propulsion
b) Hohmann transfer with chemical propulsion
c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion
8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
b) In the line between the primary mass and secondary mass, opposite to the secondary mass
c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass
9) The ascending order of the energy of a Keplerian orbit is:
a) Circle, Ellipse, Parabola, Hyperbola
(b) Hyperbola, Parabola, Ellipse, Circle

c) Ellipse, Circle, Hyperbola, Parabola
d) None of the above
10) In a Keplerian orbit representation, the ascending node is:

The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors

c) The angle between the orbit plane and a plane of reference (e.g. equator)
d) None of the above
11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23 h 56 minutes
c) Precession, with a period of 25,765 years and Nutation, with a period of 18.6 years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23 h 56 minutes
12) The effect of the Drag on the orbit
a) Increase of eccentricity, decrease of perigee height
b) Decrease of eccentricity, decrease of perigee height
c) Decrease of eccentricity, decrease of apogee height

d.) Increase of eccentricity, decrease of apogee height

13) The period of the Geosynchronous Equatorial Orbit (GEO) is
(3) A sidereal day (i.e. 23 h 56 m 4.09 s)
b) A solar day (i.e. 24 h)
c) Proportional to the synodic period
d) None of the above
14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
c) The inclination
d) The eccentricity
15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the Earth.
b) Corresponds to a great circle
c) Repeats the same ground track over and over
d) All of the above
16) A constellation of satellites is
a) Is composed by satellites of very different design
b) Has a common objective (e.g. communication, navigation, science). \qquad Is composed by satellites in different orbit each
di) All of the above
17) The Lambert theorem states that the transfer time of a body moving between two points on a conic trajectory
a) depends on the chord joining these two positions
b) is independent of the direction of motion
(c) depends on the conic eccentricity joining these two positions

d) None of the above
18) When solving the Lambert problem by Simon's method, the geometric meaning of \sqrt{Z} corresponds to
a) The eccentricity of the solution orbit
b) half of the variation in eccentric anomaly between P_{1} and P_{2} on the solution orbit
c) half of the variation in true anomaly between P_{1} and P_{2} on the solution orbit

d) None of the above
19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. $\Delta \mathrm{V}, \Delta \theta$) for various combinations of launch time and time-of-flight Δt
b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard the spacecraft.
d) Every pair of launch time and time-of-flight Δ t outputs a different result (e.g. $\Delta V, \Delta \theta$) in the PCP, being no repeated values in the PCP.
20) The Broken Plane Manoeuvre is a consequence of
a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low $\Delta \mathrm{V}$ requirements of polar transfers
d) None of the above
21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
(b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist maneuver
c) To preliminary design interplanetary missions by means of gravity assists
d) None of the above
22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above
23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem

All of the above
24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun
c) Its size is proportional to the distance from the planet to the Sun

d) None of the above
25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
b) Can require derivatives of first, second or third order
c) The initialization guess must be good enough to assure numerical convergence
d) None of the above

Astrodynamics ESEIAAT UPC

Name: UG
DNI or Passport: Instructions for all attendees:

January 2021
Final Exam

Compute the ΔV and necessary time to reduce by half the orbital period of a synchronous satellite with Neptune rotation using an inward Hohman transfer.

Assuming

$$
\begin{aligned}
& \mu_{N}=6.836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \\
& R_{N}=24764 \mathrm{~km}
\end{aligned}
$$

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h
b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0} / 2$)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required ΔV, plotting (sketching) where each ΔV takes places, and its direction:
e) Assuming a solid chemical propulsion system of $I_{s p}=300 \mathrm{~s}$, compute the required mass fraction of propellant to perform such maneuver.

Question 2 (2 points):
A geocentric parabolic orbit has a perigee radius of 6600 km
Assuming

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=6378 \mathrm{~km} \\
& \mu_{\mathrm{E}}=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a) Determine the flight time from $\theta=-90^{\circ}$ to $\theta=+90^{\circ}$
b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

Question 2

$$
r_{p}=6^{\prime} 6 \cdot 10^{\varepsilon} \mathrm{m} \quad R_{E}=6^{\prime} 378 \cdot 10^{6} \mathrm{~m} \quad \mu_{E}=3^{\prime} 986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
$$

a) $\Delta t_{-90^{\circ} \rightarrow 90^{\circ}}$? Because of the symmetry of the problem, $\Delta t_{-90^{\circ} \rightarrow 50^{\circ}}=2, \Delta t_{0^{\prime}-90^{\circ}}$
$p=\left\{2 \cdot r^{\prime} / 2 \cdot 20^{6} \quad p=r_{p} \cdot 2=13^{\prime} 2 \cdot 10^{6} \mathrm{~m} \quad h=\sqrt{p^{\prime} \mu}=7^{\prime} 2536 \cdot 10\right.$

$$
m_{\theta=90^{\circ}}=\frac{1}{2} \cdot \operatorname{tag}\left(\frac{90}{2}\right)+\frac{1}{3} \tan ^{3}\left(\frac{90}{2}\right)=\frac{2}{3}
$$

$$
\Pi_{0=0^{\circ}}=0 \quad \Delta M=\frac{2}{3} \quad \Delta t_{1}=\frac{\Delta M \cdot n^{3}}{\mu^{2}}=1801^{\prime} 382 \mathrm{~s}
$$

$$
t_{t}=2 \cdot \Delta t_{1}=320 z^{\prime} 764 \mathrm{~s}=0.8897 \mathrm{~h}
$$

$$
\begin{aligned}
& \text { b) } t=24 h \rightarrow r ? \theta \text { ? } \\
& t=86400 \mathrm{~s} \\
& \pi=\frac{\mu^{2}}{h^{3}} t=35^{\prime} 9689 \quad \theta=2 \cdot a \tan \left[\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{1 / 3}-\right. \\
& \left.\theta=160^{\prime} 5392^{\circ}\right] \\
& \left.r=\frac{p}{1+\cos \theta}=231050^{\prime} 574 \mathrm{~km} \quad-\left(3 M+\sqrt{(3 M)^{2}+1}\right)^{-1 / 3}\right]
\end{aligned}
$$

Question 1

$$
\mu_{N}=6^{\prime} 836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \quad R_{N}=247644 \mathrm{~cm}
$$

$$
\begin{aligned}
& \text { a) } i=0, e=0 \quad T=16^{\prime} 11 \mathrm{~h} \Rightarrow h ? \\
& T=2 \pi \sqrt{\frac{a^{3}}{\mu}}=16^{\prime} 11 \mathrm{~h}=57996 \mathrm{~s} \\
& 57996=2 \pi \sqrt{\frac{a^{3}}{6^{\prime} 836529 \cdot 10^{15}} \Rightarrow a=83513^{\prime} 625 \mathrm{~km}=r_{0}} \\
& h=r-R_{N}=58749 \cdot 625 \mathrm{~km} \quad,
\end{aligned}
$$

b)

$$
\begin{aligned}
& T_{f}=\frac{T_{0}}{2}=8^{\prime} 055 \mathrm{~h}=28998 \mathrm{~s} \\
& 28998 \mathrm{~s}=2 \pi \sqrt{\frac{a^{3}}{\mu}} \Rightarrow a=52610^{\prime} 287 \mathrm{~km}=r_{f}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \underline{e}_{\text {trans }}=\frac{r_{0}-r_{f}}{r_{0}+r_{f}}=0.227 \\
& a_{\text {trans }}=62061^{\prime} 956 \mathrm{~km} \\
& \Delta t_{\text {athens }}=\frac{T_{\text {trans }}}{2}=\pi \sqrt{\frac{a_{\text {trans }}^{3}}{\mu_{N}}}=21334^{\prime} 8 \mathrm{~s}=5^{\prime} 926 \mathrm{~h}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \left.\begin{array}{l}
\left.\left.V_{0}=\sqrt{\frac{\mu}{r_{0}}=9047^{\prime} 72 \mathrm{~m} / \mathrm{s}} \begin{array}{c}
7954^{\prime} 67 \\
V_{0}=\sqrt{\frac{2 \mu}{r_{0}}-\frac{\mu}{2+1}}=581^{\prime} 7 \mathrm{~m} / \mathrm{s}
\end{array}\right] \Delta \Delta V_{1}=V_{a}-V_{0}=-1083^{\prime} 05 \mathrm{~m} / \mathrm{s}\right] \\
12627^{\prime} 25
\end{array}\right] \\
& \left.V_{p}=\sqrt{\frac{2 \mu}{g_{g}}-\frac{\mu}{a_{+\infty n s}}}=12627^{\prime} 259^{\prime} 41 \mathrm{~m} / \mathrm{s} V_{1}|\sqrt{\mu}| \Delta V_{2}=-1227^{\prime} 84 \mathrm{~m} / \mathrm{s}\right) \\
& V_{1}=\sqrt{\frac{\mu}{r_{1}}}=11399^{\prime} 41 \mathrm{~m} / \mathrm{s} \quad \left\lvert\, \begin{array}{l}
\left|\Delta V_{2}=-122784 \mathrm{~m} / \mathrm{s}\right| \\
\left|\Delta V_{3}=\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right|=2320^{\prime} 89\right.
\end{array}\right.
\end{aligned}
$$

Question 1

e) $I_{s p}=300 s$, selid nop?

$$
\frac{\Delta m}{m_{0}}=1-e^{-\frac{\Delta V}{I_{p} \cdot g s L}}=0^{\prime} 5455
$$

Name: PM
DNI or Passport:
Instructions for all attendees:

This theoretical part weights 4 points out of 10 in the final exam
There is ONLV one correct answer on each question.
Every correctly answered question adds +1.0 point.
Every incorrectly answered question discounts -0.25 points
30 minutes of maximum time to complete the test.
No lecture slides are allowed or Internet resources.
Additional Instructions for remote attendees:
Highlight in bold the correct answer.
After completion, email-me the exam.
The camera and microphone must be switched on during the entire exam duration.
Only the mouse can be used during the exam to make the text bold.
$0)$ This is a question sample on how to return the exam for remote atendees.
a) This answer is NOT selected.
b) This answer is NOT selected.
c) This answer is selected and this is why it is bolded.
d) None of the above

1) What is the central assumption in the patched conic method?
a) To have multiple sphere of influences acting simultaneously
(bi) To have only one central body acting on a given time
c) To have propulsion acting during the cruise phase
d) None of the above
2) What is a stable time reference, suitable for timekeeping during an entire space mission?
a) A timescale based on the daily rotation of the Earth
b) A timescale based on the yearly translation of the Earth around the sun
(C) A timescale based on an atomic oscillator

d) None of the above
3) The inclination of the orbit (assuming a direct insertion without manoeuvring):
a) Is lower or equal than the latitude of the launch site
(b) Is greater or equal than the latitude of the launch site

c) Depends on the launch time
d) None of the above
4) In the two body problem, which of the Keplerian elements are not constant?
(a) True Anomaly, Eccentric Anomaly
b) Semi-major axis, eccentricity
c) Inclination, longitude of the ascending node

d) None of the above
5) Which statement is true before and after a gravity assist manoeuvre:
(a) The velocity of the spacecraft relative to the planet is maintained constant

NOK(b) The velocity of the planet relative to the Sun is maintained constant
c) The velocity of the spacecraft relative to the Sun is maintained constant
d) None of the above
6) Changing the inclination of the orbital plane is more fuel-efficient:
(a) In the line of nodes, where the spacecraft intersects the plane of reference
b) At the periapsis, where the velocity is greatest

c) At the apoapsis, where the velocity is lowest
d) None of the above
7) The quickest orbital transfer, adequate to respond a medical emergency on board is:
(a) Hyperbolic transfer with chemical propulsion
b) Hohmann transfer with chemical propulsion

c) Multiple Hohmann segment with multiple chemical low thrust impulses
d) Spiral transfer with continuous electrical propulsion
8) In a restricted circular three body problem, the libration point L3 point is located:
a) Between the principal mass and the secondary mass, close to the secondary mass
(b) In the line between the primary mass and secondary mass, opposite to the secondary mass
c) +60 degrees from the centre of mass, advanced of the secondary mass
d) -60 degrees from the centre of mass, retarded of the secondary mass
9) The ascending order of the energy of a Keplerian orbit is:
(a) Circle, Ellipse, Parabola, Hyperbola
b) Hyperbola, Parabola, Ellipse, Circle
c) Ellipse, Circle, Hyperbola, Parabola

d) None of the above
10) In a Keplerian orbit representation, the ascending node is:
a) The line intersecting the orbit plane and plane of reference (e.g. equator)
b) The cross product of the position and velocity vectors
c) The angle between the orbit plane and a plane of reference (e.g. equator)
(d) None of the above
11) The rotation of Earth presents two clear perturbation periods:
a) Nutation, with a period of 25,765 years and Precession, with a period of 18.6 years
b) Polar motion with a period of 28 days and sidereal rotation of 23 h 56 minutes
(c) Precession, with a period of 25,765 years and Nutation, with a period of 18.6 years
d) Sidereal rotation, with a period of 28 days and Polar motion with a period of 23 h 56 minutes
12) The effect of the Drag on the orbit
a) Increase of eccentricity, decrease of perigee height
b) Decrease of eccentricity, decrease of perigee height
(c) Decrease of eccentricity, decrease of apogee height
d) Increase of eccentricity, decrease of apogee height

13) The period of the Geosynchronous Equatorial Orbit (GEO) is
(a) A sidereal day (ie. 23 h 56 m 4.09 s)
b) A solar day (i.e. 24 h)
c) Proportional to the synodic period
d) None of the above
14) Molniya and Tundra Orbits share
a) The semi-major axis
b) The orbital period
(c) The inclination
d) The eccentricity
15) The satellite Ground track on a non-rotating spherical Earth
a) It is determined by the intersection of a plane passing through the center of the Earth.
b) Corresponds to a great circle
c) Repeats the same ground track over and over
d) All of the above
16) A constellation of satellites is
a) Is composed by satellites of very different design
(b) Has a common objective (e.g. communication, navigation, science).
c) Is composed by satellites in different orbit each
d) All of the above

17) The Lambert theorem states that the transfer time of a body moving between two points on a conic trajectory
(a) depends on the chord joining these two positions
b) is independent of the direction of motion
c) depends on the conic eccentricity joining these two positions
d) None of the above
18) When solving the Lambert problem by Simon's method, the geometric meaning of $\sqrt{2}$ corresponds to
a) The eccentricity of the solution orbit
(b) half of the variation in eccentric anomaly between P_{1} and P_{2} on the solution orbit
c) half of the variation in true anomaly between P_{1} and P_{2} on the solution orbit
d) None of the above
19) Which sentence is not true about the Pork Chop Plot?
a) Depicts the results (e.g. $\Delta V, \Delta \theta$) for various combinations of launch time and time-of-flight Δt
b) Depend on launch constraints such as the range of allowable launch azimuths
c) Provide a preliminary estimate of the amount of propellant to be carried onboard the spacecraft.
d Every pair of launch time and time-of-flight Δ t outputs a different result (e.g. $\Delta \mathrm{V}, \Delta \theta$) in the PCP, being no repeated values in the PCP.
20) The Broken Plane Manoeuvre is a consequence of
(a) Planetary orbits (departure, arrival) are not co-planar
b) Planetary orbits (departure, arrival) are eccentric
c) The low $\Delta \mathrm{V}$ requirements of polar transfers
d) None of the above
21) What is the use of the Tisserand Graph ?
a) To obtain the synodic periods in interplanetary missions
b) To determine whether a mass (e.g. a comet) is the same before/after a gravity assist maneuver
(c) To preliminary design interplanetary missions by means of gravity assists
d) None of the above
22) In the restricted three-body problem, the third mass (e.g. a spacecraft)
a) Can move freely in any position with any velocity
(b) Has forbidden regions that cannot cross into, depending on the value of the Jacobi constant
c) The velocity is zero for any value of the Jacobi constant.
d) None of the above
23) In the n-body problem,
a) The Total Linear Momentum is conserved, as in the two-body problem
b) The Total Angular Momentum is conserved, as in the two-body problem
c) The Total Energy of the system is conserved, as in the two-body problem
(d) All of the above
24) The Sphere of Influence SOI:
a) Inside the planet SOI, the motion of the Space Vehicle is determined by its equations of motion relative to the Sun
b) Its size is proportional to the mass of the planet versus the Sun
(c) Its size is proportional to the distance from the planet to the Sun
d) None of the above
25) Numerical Iterative methods
a) Always convergence to a stable solution with an adequate numerical precision
(b) Can require derivatives of first, second or third order
c) The initialization guess must be good enough to assure numerical convergence
d) None of the above

Astrodynamics ESEIAAT UPC

Name: PM

DNI or Passport:

January 2021
Final Exam

Question 1 (4 points):

Compute the $\Delta \mathrm{V}$ and necessary time to reduce by half the orbital period of a synchronous satellite with Neptune rotation using an inward Hohman transfer.

Assuming

$$
\begin{aligned}
& \mu_{N}=6.836529 \cdot 10^{15} \mathrm{~m}^{3} / \mathrm{s}^{2} \\
& R_{N}=24764 \mathrm{~km}
\end{aligned}
$$

a) Assuming an orbit inclination of cero degrees and a circular orbit, determine the orbit height at which the orbiter would be synchronised with the Neptune's sidereal period of 16.11 h
b) Determine the final semi-major axis of the final semi-synchronous orbit (i.e. $\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{0} / 2$)
c) For the Hohman transfer, compute the eccentricity and the time required to perform the manoeuvre:
d) Determine the initial, final and total required ΔV, plotting (sketching) where each ΔV takes places, and its direction:
e) Assuming a solid chemical propulsion system of $I_{s p}=300 \mathrm{~s}$, compute the required mass fraction of propellant to perform such maneuver.

Question 2 (2 points):
A geocentric parabolic orbit has a perigee radius of 6600 km

Assuming

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{E}}=6378 \mathrm{~km} \\
& \mu_{\mathrm{E}}=3.986 \cdot 10^{14} \mathrm{~m}^{3} / \mathrm{s}^{2}
\end{aligned}
$$

a) Determine the flight time from $\theta=-90^{\circ}$ to $\theta=+90^{\circ}$
b) Determine the geocentric vector (r, θ) after 24 h of orbiting the perigee.

Quention 1
a)

$$
T=2 \pi \sqrt{\frac{a^{3}}{N}}
$$

To de symchronired $\rightarrow T=16^{\prime} 11 \mathrm{~h}=57996 \mathrm{~s}$

$$
\begin{aligned}
& \text { Hence, } \\
& 57996=2 n \sqrt{\frac{a^{3}}{\mu_{N}}} \rightarrow \sqrt[3]{\left(\frac{57996}{2 n}\right)^{2} \cdot N_{N}}=a \rightarrow \\
& \rightarrow a=\sqrt[3]{\left(\frac{57996}{2 n}\right)^{2} \cdot 61836529 \cdot 10^{15}}=83513625^{\prime} 04 \mathrm{~m}
\end{aligned}
$$

As it's a ciruta orbit $\rightarrow r=$ cte $=a$
Then,

$$
\begin{aligned}
& h=r-n_{N}=83513625^{\prime} 04-24764000=58749625^{\prime} 04 \mathrm{~m} \\
& h\left(T=16^{\prime} 11 \mathrm{~h}\right)=58749625^{\prime} 04 \mathrm{~m} \\
& \text { b) }
\end{aligned}
$$

$$
\begin{aligned}
& T_{0}=57996 \mathrm{~s} \\
& T_{f}=\frac{T_{0}}{2}=28998 \mathrm{~s}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& a_{1}=\sqrt[3]{\left(\frac{T f}{2 n}\right)^{2} \mu_{N}}=\sqrt[3]{\left(\frac{28998}{2 n}\right)^{2} \cdot 6836529 \cdot 10^{15}}=52610287107 \\
& a_{f}=52610287107 \mathrm{~m}
\end{aligned}
$$

C)

From the slides it is Urouen that the exentricity of an ongival Athriann tamgen orbit is:

Then,

$$
e t_{\text {an }}=\frac{83513625^{\prime} 04-52610287107}{83513625^{\prime 04}+52610288107}
$$

$$
\text { etran }=0^{\prime} 2270 \not \subset \rightarrow \text { Elipticial ariit, as exputted }
$$

The time required to perfarm the manacuere will be lalf the peviod of the Hohmann tarnge? ?hert herce:

$$
\begin{aligned}
\Delta t_{\text {tam }}= & \frac{\text { Thans }}{2}= \\
\qquad \text { a tram } & =\frac{a_{0}+a_{f}}{\mu_{N}^{3}}=68061956^{\prime} 06 \mathrm{~m}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\Delta t_{\text {Gam }} & =n \sqrt{\frac{68061956106^{3}}{6^{\prime} 836529 \cdot 10^{15}}}=2133418 \mathrm{~s}= \\
& =5^{\prime 9264}
\end{aligned}
$$

$$
\Delta t_{\text {tam }}=51926 h
$$

Question 1

$$
\left.\left|\Delta V_{1}\right|=\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right|=2320^{\prime} 84 \frac{\mathrm{~m}}{\mathrm{~s}} \right\rvert\, \rightarrow \text { rathe } \Delta V
$$

$$
\begin{aligned}
& \text { d) } \\
& \Delta V_{1}=V_{a}-V_{0}=\sqrt{\frac{2 \cdot N_{N}}{a_{0}}-\frac{N_{N}}{a \hbar_{a n}}}-\sqrt{\frac{N_{N}}{a_{0}}} \\
& \Delta V_{1}=\sqrt{\frac{2 \cdot 6^{\prime} 836529 \cdot 10^{\prime 5}}{83513625^{\prime} 04}-\frac{6^{\prime} 836529 \cdot 10^{\prime \prime}}{68061956^{\prime} 06}}-\sqrt{\frac{6836529 \cdot 10^{\prime}}{83513625^{\prime} 04}} \\
& \Delta V_{1}=7954167 \frac{\mathrm{~m}}{\mathrm{~s}}-9047^{172} \frac{\mathrm{~m}}{\mathrm{~s}}=-1093^{105} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \Delta V_{1}=1093105 \frac{\mathrm{~m}}{\mathrm{~s}} \rightarrow \text { initicil oVa } \\
& \Delta V_{2}=V_{f}-V_{p}=\sqrt{\frac{N}{a_{f}}}-\sqrt{\frac{2 N_{N}}{a_{f}}-\frac{N_{N}}{a_{\text {tam }}}} \\
& \Delta V_{2}=\sqrt{\frac{6^{\prime} f 36529 \cdot 10^{15}}{52610287^{\prime} 07}}-\sqrt{\frac{2 \cdot 6^{\prime \prime} 836529 \cdot 10^{15}}{52610287^{\prime} 67}-\frac{6^{\prime} 836529 \cdot 10^{\prime 5}}{68061956^{\prime} 06}} \\
& \Delta V_{2}=11399^{\prime} 41 \frac{\mathrm{~m}}{\mathrm{~s}}-12627^{\prime} 25 \frac{\mathrm{~m}}{\mathrm{~s}}=-1227^{\prime} 84 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \left|\Delta V_{2}\right|=1227^{\prime} 84 \frac{\mathrm{~m}}{\mathrm{~s}} \rightarrow \text { Final } \Delta V
\end{aligned}
$$

2 .ataurfe 1
suetin

e)

From the courre's shids:

$$
\left(\frac{\Delta m_{b}}{m_{b}}\right)=1-e^{-\frac{\Delta v}{I_{s p} \cdot g_{S L}}}
$$

Prapillant man faction.

Then, as $I_{s p}=300 \mathrm{~s}, \quad \Delta V=\left|\Delta V_{r}\right|=2320^{\prime} 89 \frac{\mathrm{~m}}{\mathrm{~s}}$, and $g_{s L}$ is qi81 $\frac{m}{s^{2}}$;

$$
\frac{\Delta m}{m_{0}}=1-e^{-\frac{2320^{\prime} 84}{300 \cdot 9^{\prime} 19}}=0^{\prime} 5455
$$

Then, the papullant man fracton for this manouuve ij: $\frac{\Delta m}{m_{0}}=0^{\prime} 545 \mathrm{~J}$ (mitat del pes I more than half of the inital sran vill have to he prapellant!.

Quentron 2

$$
\begin{aligned}
& r_{p}=6600000 \mathrm{~m} \\
& r_{E}=6378000 \mathrm{~m} \\
& \mu_{E}=3^{14} 86 \cdot 10^{14} \frac{\mathrm{~m}^{3}}{\mathrm{~s}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a) } \theta_{0}=-10^{\circ} \& \theta^{s^{2}} \\
& M=10^{\circ}
\end{aligned}
$$

$$
M_{0}=\frac{1}{2} \operatorname{tg}\left(\frac{\theta_{0}}{2}\right)+\frac{1}{6} \operatorname{tg}\left(\frac{\theta_{0}}{2}\right)^{3}
$$

$$
m_{0}=\frac{1}{2} \operatorname{tg}(-45)+\frac{1}{6} \bar{g}(-45)^{3}=-\frac{2}{3}
$$

$$
m_{f}=\frac{1}{2} \operatorname{tg}\left(-\frac{\theta}{2}\right)+\frac{1}{6} \operatorname{tg}\left(\frac{\theta f}{2}\right)^{3}
$$

$$
m_{f}=\frac{1}{2} g(45)+\frac{1}{6} g(45)^{3}=\frac{2}{3}
$$

$$
\begin{aligned}
& r_{p}=\frac{h^{2}}{N_{E}} \cdot \frac{1}{1+\cos (0)} \rightarrow \sqrt{2 r_{p} N_{E}}=h= \\
& =\sqrt{2 \cdot 6600000 \cdot 3^{1986 \cdot 10^{14}}=71254 \cdot 10^{10} \frac{\mathrm{~m}^{2}}{\mathrm{~s}}}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \frac{N^{2}}{h^{3}} \Delta t=\Delta M \rightarrow \Delta t=\frac{h^{3}}{N^{2}} \Delta M=\frac{\left(7^{\prime} 254 \cdot 10^{\prime 0}\right)^{3}}{\left(3^{\prime} 486 \cdot 10^{\prime 4}\right)^{2}}\left(\frac{2}{3}+\frac{2}{3}\right) \\
& \Delta t=3203^{\prime} 29 s=0^{\prime} 8898 h \\
& \Delta t=0^{\prime} 88984
\end{aligned}
$$

b) $\theta_{0}=0 ; \theta_{f}=$?

$$
\begin{aligned}
& \Delta M=M_{f}-N_{0}^{2}=\frac{N^{2}}{4^{3}}\left(t_{f}-R_{0}^{\prime}\right) \text { (peregee) } \\
& M_{f}=\frac{\left(3^{\prime} 986 \cdot 10^{\prime 4}\right)^{2}}{\left(7^{\prime} 254 \cdot 10^{10}\right)^{3}}(24 \cdot 3600)=35^{\prime} 96
\end{aligned}
$$

from the saune's chols,
$o f=2 \operatorname{atan}\left[\left(3 m_{f}+\sqrt{(3 m)^{2}+1}\right)^{1 / 3}-\left(3 m_{f}+\sqrt{\left(3 m_{f}\right)^{2}+1}\right)^{-1 / 3}\right]$

$$
\theta \rho=2 \operatorname{atan}\left(5^{\prime} 831\right)=160^{\prime} 54^{\circ}
$$

$$
\begin{aligned}
& \text { Then, } \\
& r_{f}=\frac{h^{2}}{\mu_{E}} \frac{1}{1+\cos \theta g}=\frac{\left(7^{\prime} 254 \cdot 10^{\prime 0}\right)^{2}}{3^{\prime} 986 \cdot 10^{14}} \cdot \frac{1}{1+\cos \left(160^{\prime} 54\right)} \\
& r_{f}=r\left(\theta=160^{\prime} 54-1=231092734^{\prime} q \mathrm{~m}\right.
\end{aligned}
$$

Thus, the georentrie veston aspter 24 h orliterig is

$$
(r, \theta)=\left(231092734^{\prime} 9 \mathrm{~m}, 160^{\prime} 54^{\circ}\right)
$$

